• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Trigonometria Geométrica

Trigonometria Geométrica

Mensagempor cortesfsa » Seg Mar 29, 2010 10:31

Olá pessoal! Aqui vai uma questão cabeluda:

Tendo em vista as relações descritas na figura ao lado calcular as distâncias x e y.

Abraços :wink:
Anexos
questão.GIF
questão.GIF (4.07 KiB) Exibido 2199 vezes
Editado pela última vez por cortesfsa em Seg Mar 29, 2010 20:09, em um total de 1 vez.
Bronze OBQ Norte/Nordeste
---
"Try not. Do, or do not. There is no try." --Yoda
"Computer, compute to the last digit the value of pi" --Spock
"I have a bad feeling about this..." --Obi-Wan
cortesfsa
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sex Dez 18, 2009 22:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Trigonometria Geométrica

Mensagempor cortesfsa » Seg Mar 29, 2010 20:04

Duvido que alguem consiga
Bronze OBQ Norte/Nordeste
---
"Try not. Do, or do not. There is no try." --Yoda
"Computer, compute to the last digit the value of pi" --Spock
"I have a bad feeling about this..." --Obi-Wan
cortesfsa
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sex Dez 18, 2009 22:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Trigonometria Geométrica

Mensagempor Elcioschin » Seg Mar 29, 2010 20:30

Duvida mesmo cortesfsa ?

Aliás nem é um problema tão "cabeludo" assim: na verdade o problema é "careca" e usa peruca!!!

Seja b = ângulo NCB seja a = alfa

Triângulos NCB e CMA são semelhantes ----> ângulo NCB = ângulo CMA = b

tgb = 60/x = y/60 -----> xy = 3600 ----> y = 3600/x ---->I

tga = x/120 ----> II

tg(2a) = y/120 -----> 2*tga/(1 - tg²a) = y/120 -----> 2*(x/120)/[1 - (x/120)²] = (3600/x)/120 ----> x*(x/60) = 30*[(14400 - x²)/14400] ----> x² = (14400 - x²)/8 ---->

9x² = 14400 ----> x² = 1600 ----> x = 40 ----> y = 90
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59