• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Exercício Arcos

Exercício Arcos

Mensagempor Cleyson007 » Sáb Mar 27, 2010 01:12

Boa noite!

Imagem

Gostaria de um esclarecimento sobre o procedimento que adotei para resolver o exercício acima.

No primero arco, calculei:

l=\alpha.r

l=930m

Minha dúvida está aqui: "Esse comprimento de 930m é o comprimento total do ângulo?" --> Acredito que seja, por isso, dividi o valor encontrado por 2, dado que o automóvel faz a curva.

No segundo arco, calculei:

l=\alpha.r

l=1100m

No terceiro arco, calculei:

l=\alpha.r

l=240m "Aqui também dividi o valor encontrado por 2, dado que o automóvel faz a curva."

Comprimento total: 3505m

Está correto?

Até mais.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Exercício Arcos

Mensagempor Lucio Carvalho » Sáb Mar 27, 2010 18:34

Olá Cleyson,
Li atentamente a tua resolução e não concordo com as divisões por "2" que decidiste fazer.
Basta multiplicar a amplitude em radianos de um ângulo ao centro numa circunferência e a medida do raio da circunferência para obter o comprimento do arco correspondente. Assim:
L1 = 600 m
L2 = 3,1 x 300 = 930 m
L3 = 600 m
L4 = 5,5 x 200 = 1100 m
L5 = 500 m
L6 = 2,4 x 200 = 480 m

Comprimento de uma volta na pista = 4210 m
Avatar do usuário
Lucio Carvalho
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 127
Registrado em: Qua Ago 19, 2009 11:33
Localização: Rua 3 de Fevereiro - São Tomé
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Física/Química
Andamento: formado

Re: Exercício Arcos

Mensagempor Cleyson007 » Dom Mar 28, 2010 11:02

Lucio Carvalho escreveu:Olá Cleyson,
Li atentamente a tua resolução e não concordo com as divisões por "2" que decidiste fazer.
Basta multiplicar a amplitude em radianos de um ângulo ao centro numa circunferência e a medida do raio da circunferência para obter o comprimento do arco correspondente. Assim:
L1 = 600 m
L2 = 3,1 x 300 = 930 m
L3 = 600 m
L4 = 5,5 x 200 = 1100 m
L5 = 500 m
L6 = 2,4 x 200 = 480 m

Comprimento de uma volta na pista = 4210 m


Bom dia Lucio!

Lucio, eu estava fazendo essa confusão devido pensar que automóvel percorre a metade dos arcos (devido ele não passar por dentro da pista).

Também estive analisando o exercício e percebi que os comprimento (l) que encontramos se refere ao comprimento formado pelo ângulo e não pelo comprimento total da circunferência.

Obrigado por esclarecer minha dúvida!

Até mais.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}