• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Relação Trigonométrica na circunferência

Relação Trigonométrica na circunferência

Mensagempor Lana Brasil » Seg Abr 07, 2014 12:30

Gostaria de ajuda para resolver, não sei como fazer.
(UFRN)A figura abaixo é composta por dois eixos perpendiculares entre si, X e Y, que se intersectam no centro O de um círculo de raio 1, e outro eixo Z, paralelo a Y e tangente ao círculo no ponto P. A semi-reta OQ, com Q pertencente a Z, forma um ângulo a com o eixo Y. Podemos afirmar que o valor da medida do segmento PQ é:
a)sec ?
b)tg ?
c)cotg ?
d)cos ?

Gabarito: letra C
Obrigada.
Anexos
Figura Trigonometria.png
Figura da questão
Figura Trigonometria.png (13.36 KiB) Exibido 3852 vezes
Lana Brasil
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 73
Registrado em: Dom Abr 07, 2013 16:02
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Relação Trigonométrica na circunferência

Mensagempor e8group » Seg Abr 07, 2014 13:17

Boa tarde . Antes de tudo , tente fazer um desenho transmitindo todas idéias do enunciado.

Fazendo o desenho , representando os eixos , os pontos , poderemos construir o triângulo retângulo em P ,certo ? De catetos OP = 1 e QP = ? e hipotenusa QO = ? .Ora ,se por hipótese "A semi-reta OQ, com Q pertencente a Z, forma um ângulo \alpha com o eixo Y" , então A semi-reta QP, com Q pertencente a Z , também forma um ângulo \alpha com o eixo Z , pois Z é paralelo a Y .

Agora em um t.retângulo , sabemos que tangente("de algum ang.") = tan("de algum ang.") = (cateto oposto)/(cateto adj.) [/tex] .Neste triângulo , trocamos "de algum ang." por \alpha , cateto oposto por [ex] QP [/tex] e o adj. por 1 . Substituindo na fórmula ,obterá o resultado .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Relação Trigonométrica na circunferência

Mensagempor Lana Brasil » Ter Abr 08, 2014 08:56

santhiago escreveu:Boa tarde . Antes de tudo , tente fazer um desenho transmitindo todas idéias do enunciado.

Fazendo o desenho , representando os eixos , os pontos , poderemos construir o triângulo retângulo em P ,certo ? De catetos OP = 1 e QP = ? e hipotenusa QO = ? .Ora ,se por hipótese "A semi-reta OQ, com Q pertencente a Z, forma um ângulo \alpha com o eixo Y" , então A semi-reta QP, com Q pertencente a Z , também forma um ângulo \alpha com o eixo Z , pois Z é paralelo a Y .

Agora em um t.retângulo , sabemos que tangente("de algum ang.") = tan("de algum ang.") = (cateto oposto)/(cateto adj.) [/tex] .Neste triângulo , trocamos "de algum ang." por \alpha , cateto oposto por [ex] QP [/tex] e o adj. por 1 . Substituindo na fórmula ,obterá o resultado .



Muito obrigada pela ajuda. Achei meu erro.
Lana Brasil
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 73
Registrado em: Dom Abr 07, 2013 16:02
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}