por Apotema » Qui Nov 26, 2009 12:23
O conjunto dos números reais e (a,b) o intervalo aberto {

} seja f:

definida por f(x)
![\sqrt[]{{sec}^{2}x + {cossec}^{2}x} \sqrt[]{{sec}^{2}x + {cossec}^{2}x}](/latexrender/pictures/de5cfe970cb577c9a613611bb2ea690d.png)
tal que

então:
desenvolvi assim:
sec² = 1 +tg² = 1+(a/b)²
cossec²=1+(1/tg)²=1+(b/a)
aplicando:
f(x)=
![\sqrt[]{{sec}^{2}x + {cossec}^{2}x} \sqrt[]{{sec}^{2}x + {cossec}^{2}x}](/latexrender/pictures/de5cfe970cb577c9a613611bb2ea690d.png)
f(x)=
![\sqrt[]{1+({\frac{a}{b}})^{2}+1+({\frac{b}{a}})^{2}} \sqrt[]{1+({\frac{a}{b}})^{2}+1+({\frac{b}{a}})^{2}}](/latexrender/pictures/0e35fb29349698c110e024254e333c2f.png)
resultado:
![\frac{{a}^{2}+{b}^{2}}{ab}+\sqrt[]{2} \frac{{a}^{2}+{b}^{2}}{ab}+\sqrt[]{2}](/latexrender/pictures/a3a6ca6e9d350f97f82fee946e6a9409.png)
mas não é essa a resposta.
-
Apotema
- Usuário Ativo

-
- Mensagens: 17
- Registrado em: Qua Nov 18, 2009 19:24
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por thadeu » Qui Nov 26, 2009 14:54
-
thadeu
- Usuário Parceiro

-
- Mensagens: 69
- Registrado em: Seg Out 19, 2009 14:05
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: formado
por Apotema » Qui Nov 26, 2009 16:01
A RESPOSTA DEVE ESTAR CERTA SIM, É UMA DAS ALTERNATIVAS Q TENHO.
OBRIGADA MAIS UMA VEZ.
-
Apotema
- Usuário Ativo

-
- Mensagens: 17
- Registrado em: Qua Nov 18, 2009 19:24
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
Voltar para Trigonometria
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Limites Fundamentais
por Allysom » Sáb Jun 23, 2012 17:39
- 3 Respostas
- 1954 Exibições
- Última mensagem por Russman

Sáb Jun 23, 2012 19:54
Cálculo: Limites, Derivadas e Integrais
-
- Dúvidas e curiosidade com os limites fundamentais
por Luthius » Seg Ago 03, 2009 11:29
- 4 Respostas
- 4075 Exibições
- Última mensagem por Luthius

Ter Ago 04, 2009 08:44
Cálculo: Limites, Derivadas e Integrais
-
- aplicaçao de EDO
por nayana_ac » Dom Set 19, 2010 01:28
- 3 Respostas
- 13944 Exibições
- Última mensagem por Krilitolxc

Ter Fev 02, 2016 07:40
Problemas do Cotidiano
-
- Relações
por Rose » Qui Mai 15, 2008 14:41
- 1 Respostas
- 1863 Exibições
- Última mensagem por admin

Qui Mai 15, 2008 16:38
Funções
-
- Relações
por chronoss » Seg Mai 20, 2013 14:19
- 0 Respostas
- 990 Exibições
- Última mensagem por chronoss

Seg Mai 20, 2013 14:19
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.