• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Inequação trigonométrica

Inequação trigonométrica

Mensagempor crsjcarlos » Qua Dez 05, 2012 17:36

Boa tarde, gostaria de uma ajuda para saber qual foi o meu erro:

Resolva a inequação:

senx + cosx \geq \frac{\sqrt{2}}{2}

Primeiro eu simplifiquei senx + cosx:

(senx + cosx)^{2} -2senx.cosx = 1 \to \ (senx + cosx)^{2} = 1 + sen2x
 \Rightarrow senx + cosx = \pm \sqrt{1 + sen2x}

Agora resolvi a inequação:

\pm \sqrt{1 + sen2x} \geq \frac{\sqrt{2}}{2} \Rightarrow 1 + sen2x \geq \frac{1}{2}\Rightarrow sen2x \geq -\frac{1}{2}
crsjcarlos
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Qua Dez 05, 2012 17:32
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Inequação trigonométrica

Mensagempor e8group » Qua Dez 05, 2012 21:36

Como , \sqrt{2}/2 > 0 claramente sin(x) + cos(x) > 0 . Sendo assim , se elevarmos ambos membros ao quadrado não vamos alterar a desigualdade .(Reflita ! )

Então ,
sin(x) + cos(x) \geq \frac{\sqrt{2}}{2} \implies  (sin(x) + cos(x))^2 = sin^2(x)+ cos^2(x) + 2sin(x)cos(x) =  1  + sin(2x)\geq  \frac{1}{2} .


Somando - 1 em ambos lados ,


sin(2x) \geq - \frac{1}{2} . Você chegou aqui ,(OK !) .

Agora note que ,

sin(30^{\circ}) =  1/2 . Daí - 1/2 = - sin(30^{\circ}) =  sin( -30^{\circ}) = sin(330^{\circ}) .

Portanto temos que , sin(2x) \geq - \frac{1}{2} quando 2x  \geq - 30^{\circ} . Ou , 2x \geq  - \pi/6   \implies  x \geq  -\pi /12  \text{rad} .


Conjunto solução : S =  \left \{ x \in \mathbb{R} \ | x \geq  2 k\pi  - \frac{\pi}{12}\right \} ,k \in \mathbb{Z} .
Pois a função seno é periódica.
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59