• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Exercício Arcos

Exercício Arcos

Mensagempor Cleyson007 » Sáb Mar 27, 2010 01:12

Boa noite!

Imagem

Gostaria de um esclarecimento sobre o procedimento que adotei para resolver o exercício acima.

No primero arco, calculei:

l=\alpha.r

l=930m

Minha dúvida está aqui: "Esse comprimento de 930m é o comprimento total do ângulo?" --> Acredito que seja, por isso, dividi o valor encontrado por 2, dado que o automóvel faz a curva.

No segundo arco, calculei:

l=\alpha.r

l=1100m

No terceiro arco, calculei:

l=\alpha.r

l=240m "Aqui também dividi o valor encontrado por 2, dado que o automóvel faz a curva."

Comprimento total: 3505m

Está correto?

Até mais.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Exercício Arcos

Mensagempor Lucio Carvalho » Sáb Mar 27, 2010 18:34

Olá Cleyson,
Li atentamente a tua resolução e não concordo com as divisões por "2" que decidiste fazer.
Basta multiplicar a amplitude em radianos de um ângulo ao centro numa circunferência e a medida do raio da circunferência para obter o comprimento do arco correspondente. Assim:
L1 = 600 m
L2 = 3,1 x 300 = 930 m
L3 = 600 m
L4 = 5,5 x 200 = 1100 m
L5 = 500 m
L6 = 2,4 x 200 = 480 m

Comprimento de uma volta na pista = 4210 m
Avatar do usuário
Lucio Carvalho
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 127
Registrado em: Qua Ago 19, 2009 11:33
Localização: Rua 3 de Fevereiro - São Tomé
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Física/Química
Andamento: formado

Re: Exercício Arcos

Mensagempor Cleyson007 » Dom Mar 28, 2010 11:02

Lucio Carvalho escreveu:Olá Cleyson,
Li atentamente a tua resolução e não concordo com as divisões por "2" que decidiste fazer.
Basta multiplicar a amplitude em radianos de um ângulo ao centro numa circunferência e a medida do raio da circunferência para obter o comprimento do arco correspondente. Assim:
L1 = 600 m
L2 = 3,1 x 300 = 930 m
L3 = 600 m
L4 = 5,5 x 200 = 1100 m
L5 = 500 m
L6 = 2,4 x 200 = 480 m

Comprimento de uma volta na pista = 4210 m


Bom dia Lucio!

Lucio, eu estava fazendo essa confusão devido pensar que automóvel percorre a metade dos arcos (devido ele não passar por dentro da pista).

Também estive analisando o exercício e percebi que os comprimento (l) que encontramos se refere ao comprimento formado pelo ângulo e não pelo comprimento total da circunferência.

Obrigado por esclarecer minha dúvida!

Até mais.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59