por emarga » Sex Out 26, 2018 16:52
Boa tarde.
Preciso de ajuda na resolução do problema da figura em anexo. Sei que é necessário usar a lei dos cossenos, mas não estou conseguindo chegar à solução.

- duvidatrigonometrei.jpg (45.84 KiB) Exibido 3099 vezes
-
emarga
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Qui Fev 15, 2018 14:47
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: contabilidade
- Andamento: cursando
por Gebe » Sáb Out 27, 2018 11:51
Objetivo: Achar "H".
Seguindo o desenho em anexo.
Vamos primeiro achar "c" e "d" pela lei dos cossenos:
x = 180° - 63° - 59°
x = 90°
3² = 5² + 4² -2*5*4*cos(c)
c = 36.87°
4² = 5² + 3² -2*5*3*cos(d)
c = 53.13°
-------------------------------------
Agora podemos achar "a" e "b":
a = 59 - 36.87°
a = 22.13°
b = 63 - 53.13°
b = 9.87°
--------------------------------------
Utilizando a lei dos Senos calculamos "E" e/ou "D":
t = 180 - 63 - 59
t = 58°

-----------------------------------------------
Por fim podemos descobrir "H" pela lei dos cossenos.
Perceba que só precisamos de ou E ou D para o calculo, ou seja, só precisávamos ter achado o par ("a" e "E") ou o par ("b" e "D").
H² = E² + 4² - 2 * 4 * E * cos(a)
ou
H² = D² + 3² - 2 * 3 * E * cos(b)
H² = 5.25² + 16 - 2 * 4 * 5.25 * cos(22.13°) = 5.05² + 9 - 2 * 3 * 5.05 * cos(9.87°)
H = 2.16Km
Obs.: Foram feitos arredondamentos em alguns valores, confira os cálculos!
Bons estudos!
- Anexos
-

-
Gebe
- Colaborador Voluntário

-
- Mensagens: 158
- Registrado em: Qua Jun 03, 2015 22:47
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia eletrica
- Andamento: cursando
por emarga » Qua Nov 07, 2018 17:49
Boa noite!
Percebi todo o raciocínio. Apenas uma correção a fazer: em vez do ângulo 63, todos os cálculos devem ser feitos com o ângulo 83º. Deve ter visto mal a imagem.
Obrigado!
-
emarga
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Qui Fev 15, 2018 14:47
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: contabilidade
- Andamento: cursando
Voltar para Trigonometria
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Problema Elementar de Cossenos
por ronneysantos » Dom Mar 27, 2011 21:05
- 6 Respostas
- 3454 Exibições
- Última mensagem por ronneysantos

Qui Mar 31, 2011 10:59
Trigonometria
-
- Lei dos Cossenos
por Joseaugusto » Ter Mar 06, 2012 11:43
- 4 Respostas
- 2777 Exibições
- Última mensagem por Joseaugusto

Ter Mar 06, 2012 22:42
Trigonometria
-
- Lei dos cossenos
por kandara » Qua Abr 30, 2014 17:35
- 1 Respostas
- 4443 Exibições
- Última mensagem por Russman

Qua Abr 30, 2014 18:54
Trigonometria
-
- UFSCar - Lei dos cossenos
por brunocav » Seg Mai 30, 2011 18:16
- 2 Respostas
- 10377 Exibições
- Última mensagem por brunocav

Seg Mai 30, 2011 19:23
Trigonometria
-
- LEI DOS SENOS E COSSENOS
por MERLAYNE » Qua Abr 25, 2012 20:36
- 1 Respostas
- 1699 Exibições
- Última mensagem por Russman

Qua Abr 25, 2012 21:26
Trigonometria
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.