• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equações trigonométricas

Equações trigonométricas

Mensagempor Fontelles » Sex Dez 11, 2009 16:15

Pessoal, fiquei preso nessa questão.
Tentei sair por produtos notáveis, não consegui, embora continue achando que a questão tem uma saída por aí.
sen³x+cos³x=1
Tentei assim:
sen³x+cos³x=(senx+cosx)(sen²x-senx.cosx+cos²x)
(senx+cosx)[1-(sen2x)/2]=1
Depois disso não achei a saída.
Ajuda ae, pessoal!
Fontelles
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Qua Dez 09, 2009 01:23
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Equações trigonométricas

Mensagempor Elcioschin » Sex Dez 11, 2009 18:55

sen³x + cos³x = 1

(senx + cosx)*(sen²x - senx.cosx + cos²x) = 1

(senx + cosx)*(1 - senx.cosx) = 1 ----> Eleve ao quadrado e simpliqfique. Vc chegará a:

sen²x*(1 - sen²x) = 0 ----> Duas soluções:

a) sen²x = 0 ----> x = k*pi

b) 1 - sen²x = 0 ----> sen²x = 1 ----> senx = 1 (x = pi/2) ou senx = - 1 (x = 3*pi/2) ----> x = k*pi + pi/2
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}