• Anúncio Global
    Respostas
    Exibições
    Última mensagem

aplicação das relações fundamentais

aplicação das relações fundamentais

Mensagempor Apotema » Qui Nov 26, 2009 12:23

O conjunto dos números reais e (a,b) o intervalo aberto {{x\in\Re,a<x<b}} seja f:(0,\frac{\pi}{2})\rightarrow\Re definida por f(x) \sqrt[]{{sec}^{2}x + {cossec}^{2}x} tal que tg\alpha=\frac{a}{b} então:
desenvolvi assim:
sec² = 1 +tg² = 1+(a/b)²
cossec²=1+(1/tg)²=1+(b/a)
aplicando:
f(x)= \sqrt[]{{sec}^{2}x + {cossec}^{2}x}
f(x)=\sqrt[]{1+({\frac{a}{b}})^{2}+1+({\frac{b}{a}})^{2}}
resultado:\frac{{a}^{2}+{b}^{2}}{ab}+\sqrt[]{2}
mas não é essa a resposta.
Apotema
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Qua Nov 18, 2009 19:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: aplicação das relações fundamentais

Mensagempor thadeu » Qui Nov 26, 2009 14:54

\sqrt{1+\frac{a^2}{b^2}+1+\frac{b^2}{a^2}}

\sqrt{\frac{a^2b^2+a^4+a^2b^2+b^4}{a^2b^2}}

\sqrt{\frac{a^4+2a^2b^2+b^4}{a^2b^2}}

\sqrt{\frac{(a^2+b^2)^2}{a^2b^2}}

\frac{a^2+b^2}{ab}

Olha se é essa a resposta
thadeu
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Seg Out 19, 2009 14:05
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: aplicação das relações fundamentais

Mensagempor Apotema » Qui Nov 26, 2009 16:01

thadeu escreveu:\sqrt{1+\frac{a^2}{b^2}+1+\frac{b^2}{a^2}}

\sqrt{\frac{a^2b^2+a^4+a^2b^2+b^4}{a^2b^2}}

\sqrt{\frac{a^4+2a^2b^2+b^4}{a^2b^2}}

\sqrt{\frac{(a^2+b^2)^2}{a^2b^2}}

\frac{a^2+b^2}{ab}

Olha se é essa a resposta

A RESPOSTA DEVE ESTAR CERTA SIM, É UMA DAS ALTERNATIVAS Q TENHO.
OBRIGADA MAIS UMA VEZ.
Apotema
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Qua Nov 18, 2009 19:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.