por darkthorn » Seg Out 28, 2013 09:37
Bom dia,
Tenho tentado resolver este exercício mas até agora no encontrei metade da solução, há algo que estou a falhar e não consigo entender onde. Será que me podiam ajudar?
Calcular K sabendo que a tangente (alfa/2) = 2 k^2-k e k pertence ao intervalo aberto de pi a 2pi
já consegui encontrar que o K tem de ser menor que 1/2 mas nas soluções indicam que tem de ser maior que 0 e é este ponto que não estou a entender, alguém me pode dar uma maozinha por favor.
Obrigada
Lina
-
darkthorn
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Dom Out 20, 2013 09:17
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Estatistica
- Andamento: formado
por darkthorn » Ter Out 29, 2013 23:44
Já consegui resolver este

-
darkthorn
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Dom Out 20, 2013 09:17
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Estatistica
- Andamento: formado
Voltar para Trigonometria
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Calcular o Cos (alfa-5Beta)
por darkthorn » Ter Nov 19, 2013 12:55
- 0 Respostas
- 1059 Exibições
- Última mensagem por darkthorn

Ter Nov 19, 2013 12:55
Trigonometria
-
- Como calcular o Perímetro sabendo-se somente a Hipotenusa
por macedo1967 » Qua Nov 29, 2017 11:03
- 2 Respostas
- 3109 Exibições
- Última mensagem por macedo1967

Ter Dez 05, 2017 18:41
Geometria Plana
-
- Calcular a área da base sabendo a fração do volume total e
por macedo1967 » Qua Nov 29, 2017 11:18
- 1 Respostas
- 7762 Exibições
- Última mensagem por AllanOliveira

Qui Dez 14, 2017 17:20
Geometria Plana
-
- Como calcular tangente a menos 1
por macburn » Seg Abr 11, 2011 22:07
- 8 Respostas
- 24440 Exibições
- Última mensagem por Marcio Barbosa

Seg Jul 31, 2017 22:05
Trigonometria
-
- Calcular reta tangente e normal à curva
por Kingflare » Dom Dez 07, 2014 23:54
- 1 Respostas
- 2476 Exibições
- Última mensagem por Molina

Qua Dez 17, 2014 14:15
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.