• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Equação Trigonométrica]Como resolver

[Equação Trigonométrica]Como resolver

Mensagempor mthc10 » Sáb Out 05, 2013 00:15

Olá amigos, estava resolvendo um problema e no final me deparei com a seguinte expressão:

-5sen(\theta) + 2cos(\theta)= 0,8155

Preciso encontrar o valor de Theta(obvio hahaha). Não tive nenhuma ideia e nem lembro de alguma identidade trigonométrica que resolva tal equação, se alguém puder ajudar na solução ficarei grato!
mthc10
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Ter Mai 21, 2013 23:46
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharel em Engenharia Elétrica
Andamento: cursando

Re: [Equação Trigonométrica]Como resolver

Mensagempor Bravim » Sáb Out 05, 2013 15:19

~.~
Editado pela última vez por Bravim em Dom Out 06, 2013 02:36, em um total de 4 vezes.
Imagem
Avatar do usuário
Bravim
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 57
Registrado em: Qui Out 03, 2013 03:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: [Equação Trigonométrica]Como resolver

Mensagempor mthc10 » Dom Out 06, 2013 01:09

Amigo, o intervalo é de 0º à 360º.
Sendo assim, utilizando a fórmula que você deixou para eu calcular no intervalo de 0 até 2pi eu obtenho como resposta 20.37º. Porém, quando substituo este valor na equação original ela não satisfaz a igualdade...

Eu sei que a resposta que satisfaz a equação para o intervalo citado é 13,09º. Só não consigo chegar precisamente a este valor...
mthc10
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Ter Mai 21, 2013 23:46
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharel em Engenharia Elétrica
Andamento: cursando

Re: [Equação Trigonométrica]Como resolver

Mensagempor Bravim » Dom Out 06, 2013 02:31

Você está completamente certo! Desculpe devo ter errado em alguma substituição.
Bem, dessa vez vou chamar 0.8155=a para evitar de me confundir.
4cos^2(x)=a^2+25sin^2(x)+10asin(x)
utilizando a relação fundamental: sin^2(x)+cos^2(x)=1
4-4sin^2(x)=a^2+25sin^2(x)+10asin(x)
29sin^2(x)+10asin(x)+a^2-4=0
sin(x)=\frac{-10a\pm\sqrt[]{464-16a^2}}{58}
sin(x)=\frac{-5a\pm 2*\sqrt[]{29-a^2}}{29}
x=arcsin(\frac{-5a\pm 2*\sqrt[]{29-a^2}}{29})
Neste caso ter-se-á as mesmas condições
Imagem
Avatar do usuário
Bravim
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 57
Registrado em: Qui Out 03, 2013 03:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: [Equação Trigonométrica]Como resolver

Mensagempor mthc10 » Dom Out 06, 2013 22:40

Valeu irmão! Eu tava achando 13,7 pela aproximação que a calculadora faz, mas quando tu chamou de a o valor pequeno, não deu mais problemas!
Valeu mesmo!
mthc10
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Ter Mai 21, 2013 23:46
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharel em Engenharia Elétrica
Andamento: cursando


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59