por METEOS » Seg Set 30, 2013 17:06
Bom dia, caros(as) membros deste fórum.
Como preparação para um teste, há dois exercícios do mesmo género de trigonometria que consistem em relacionar as razões trigonométricas, de forma a provar que um dos membros é igual ao outro.
Enunciado: Sendo x a amplitude de um ângulo agudo, mostra que:
1) sen x +

=

2)

- 1 = sen x
Gostaria que me indicassem a correcção, e posteriormente, truques para a resolução deste género de exercícios
Agradecido,
Luís Soares (couldzao).
-
METEOS
- Usuário Ativo

-
- Mensagens: 12
- Registrado em: Seg Set 30, 2013 17:04
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Ciencias
- Andamento: cursando
por Russman » Seg Set 30, 2013 17:41
Bata que você reduza os denominadores da expressões.
Na primeira, note que

. Assim,


.
Na segunda,


"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
Voltar para Trigonometria
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Trigonometria (Relações entre linhas trigonométricas)
por claudia » Seg Ago 25, 2008 14:58
- 5 Respostas
- 5491 Exibições
- Última mensagem por claudia

Qua Ago 27, 2008 17:15
Trigonometria
-
- Relações entre 2 números
por leocadio » Dom Nov 02, 2008 14:29
- 3 Respostas
- 2817 Exibições
- Última mensagem por Sandra Piedade

Dom Nov 02, 2008 15:57
Álgebra Elementar
-
- Relaçoes entre conjuntos
por Zanatta » Qua Abr 24, 2013 20:42
- 0 Respostas
- 1253 Exibições
- Última mensagem por Zanatta

Qua Abr 24, 2013 20:42
Conjuntos
-
- Mostrar relações binárias entre conjuntos
por danieltnaves » Sex Abr 15, 2011 14:20
- 6 Respostas
- 3112 Exibições
- Última mensagem por danieltnaves

Sex Abr 15, 2011 17:49
Álgebra Elementar
-
- [Relação entre Conjuntos] Relações de Equivalência
por andrelangoni » Qui Abr 20, 2017 23:12
- 0 Respostas
- 2055 Exibições
- Última mensagem por andrelangoni

Qui Abr 20, 2017 23:12
Conjuntos
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.