• Anúncio Global
    Respostas
    Exibições
    Última mensagem

relação entre x e y

relação entre x e y

Mensagempor Apotema » Qua Nov 18, 2009 19:57

Sejam a e b consonstantes reais positivas. Considere x=a²tg t+1 e y²=b² sec² t-b² em que 0<t<pi/2 Então uma relação entre x e y é?
Tomei esse caminho, mas não conclui:
x={a}^{2}tg t+1 \Rightarrow
tg t=\frac{x-1}{{a}^{2}} \Rightarrow {y}^{2}={b}^{2}{sec}^{2}t-{b}^{2} \Rightarrow {sec}^{2}t=\frac{{y}^{2}+{b}^{2}}{{b}^{2}}\Rightarrow sec t=\frac{y}{b}
substituindo em tg e em sec:
tg=sen . sec \Rightarrow\frac{x-1}{{a}^{2}}=sen.\frac{y}{b}
daí não sei o que fazer com sen, ou se ele nem deveria estar ali.
Apotema
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Qua Nov 18, 2009 19:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: relação entre x e y

Mensagempor thadeu » Qua Nov 18, 2009 20:18

Você se esqueceu de uma coisinha de nada... sec^2x-1=tg^2x
Na segunda equação, temos:

y^2=b^2sec^2t-b^2 colocando b^2 em evidência:

y^2=b^2(sec^2t-1)\Rightarrow\,y^2=b^2tg^2t\,\Rightarrow\^, \frac{y^2}{b^2=tg^2t}

Elevando a primeira equação ao quadrado:

(tgt)^2=(\frac{x-1}{a^2})^2\,\Rightarrow\,tg^2t=\frac{(x-1)^2}{a^4}

igualando as duas:

\frac{y^2}{b^2}=\frac{(x-1)^2}{a^4}\,\Rightarrow\,\sqrt{\frac{y^2}{b^2}}=\sqrt{\frac{(x-1)^2}{a^4}}\,\Rightarrow\,\frac{y}{b}=\frac{x-1}{a^2} \Rightarrow y=\frac{b(x-1)}{a^2}
thadeu
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Seg Out 19, 2009 14:05
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: relação entre x e y

Mensagempor Apotema » Qui Nov 19, 2009 20:41

Sim, mas o enunciado quer uma relação entre x e y, vou colocar algumas alternativas q tenho aqui:
a)y=\frac{b}{a}{(x-1)}^{2},\geqa
b)y=\frac{{b}^{2}}{a}{(x-1)}^{2},x\geq1
c)y=\frac{b}{{a}^{2}}(x-1),\forall\forallx\in\Re
d)y=-\frac{b}{{a}^{2}}(x-1),x\geq1
e)y=\frac{{a}^{2}}{b}(x-1),x\leq1
Seria o item c) ou estou fazendo uma leitura errada?
Desde já obrigada pela ajuda.

thadeu escreveu:Você se esqueceu de uma coisinha de nada... sec^2x-1=tg^2x
Na segunda equação, temos:

y^2=b^2sec^2t-b^2 colocando b^2 em evidência:

y^2=b^2(sec^2t-1)\Rightarrow\,y^2=b^2tg^2t\,\Rightarrow\^, \frac{y^2}{b^2=tg^2t}

Elevando a primeira equação ao quadrado:

(tgt)^2=(\frac{x-1}{a^2})^2\,\Rightarrow\,tg^2t=\frac{(x-1)^2}{a^4}

igualando as duas:

\frac{y^2}{b^2}=\frac{(x-1)^2}{a^4}\,\Rightarrow\,\sqrt{\frac{y^2}{b^2}}=\sqrt{\frac{(x-1)^2}{a^4}}\,\Rightarrow\,\frac{y}{b}=\frac{x-1}{a^2} \Rightarrow y=\frac{b(x-1)}{a^2}
Apotema
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Qua Nov 18, 2009 19:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: relação entre x e y

Mensagempor thadeu » Qui Nov 19, 2009 21:56

Eu reparei que na hora da digitação ocorreu um erro:

\frac{y^2}{b^2}=tg^2t e não \frac{y^2}{b^2=tg^2t}

Com relação à resposta, é o item C

\frac{b(x-1)}{a^2}=\frac{b}{a^2}(x-1)

Desculpe o erro...
thadeu
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Seg Out 19, 2009 14:05
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: relação entre x e y

Mensagempor Apotema » Seg Nov 23, 2009 08:12

thadeu escreveu:Eu reparei que na hora da digitação ocorreu um erro:

\frac{y^2}{b^2}=tg^2t e não \frac{y^2}{b^2=tg^2t}

Com relação à resposta, é o item C

\frac{b(x-1)}{a^2}=\frac{b}{a^2}(x-1)

Desculpe o erro...

Não é erro, é engano, sem contar que na transcrição para o editor de fórmulas é trabalhoso. Obrigada.
Apotema
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Qua Nov 18, 2009 19:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}