• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Trigonometria no ciclo]

[Trigonometria no ciclo]

Mensagempor Sabrinna » Qui Abr 04, 2013 16:04

Boa tarde! Não estou conseguindo resolver esse exercício.Me ajudem!!!



Se tgx=4,determine o valor de:
tg(?/4 + x) + tg( ?/4 - x)
Sabrinna
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Qui Abr 04, 2013 15:32
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Trigonometria no ciclo]

Mensagempor e8group » Qui Abr 04, 2013 16:37

Boa tarde ,vamos deduzir simultaneamente uma fórmula para tangente da soma e diferença de dois ângulos .

Considere tan(a + c) .Temos tan(a+c) = \frac{sin(a+c)}{cos(a+c)} ,como

sin(a+c) = sin(a)cos(c) + cos(a)sin(c) e cos(a+c) = cos(a)cos(c) - sin(a)sin(c) ,então :

tan(a+c) = \frac{sin(a)cos(c) + cos(a)sin(c) }{cos(a)cos(c) - sin(a)sin(c)} e ainda a expressão é equivalente a


tan(a+c) = \frac{\dfrac{sin(a)cos(c) + cos(a)sin(c)}{cos(a)cos(c)} }{\dfrac{cos(a)cos(c) - sin(a)sin(c)}{cos(a)cos(c)}} =  \frac{tan(a) + tan(c)}{1-tan(a)tan(c)} .

Assim , se c = -b . A tangente da diferença a-b será : tan(a-b) = \frac{tan(a) - tan(b)}{1 +tan(a)tan(b)} e da soma a+b : tan(a +b) = \frac{tan(a) + tan(b)}{1 -tan(a)tan(b)} .

Aplicação :

tan(\pi/4 + x) = tan(45^{\circ} + x) = \frac{tan(45^{\circ}) + tan(x)}{1 -tan(45^{\circ})tan(x)}

e tan(\pi/4 - x) = tan(45^{\circ} - x) = \frac{tan(45^{\circ}) - tan(x)}{1 +tan(45^{\circ})tan(x)} . Sendo tan(\pi/4) = tan(45^{\circ} ) = 1 ,então :

tan(\pi/4 + x) = tan(45^{\circ} + x) = \frac{1 + tan(x)}{1 -tan(x)}

e tan(\pi/4 - x) = tan(45^{\circ} - x) =  \frac{1 - tan(x)}{1 +tan(x)} .

Logo ,

tan(\pi/4 + x) + tan(\pi/4 - x)  =  \frac{1 + tan(x)}{1 -tan(x)} +  \frac{1 - tan(x)}{1 +tan(x)} . Basta substituir tan(x) = 4 ...
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Trigonometria no ciclo]

Mensagempor Sabrinna » Qui Abr 04, 2013 18:44

Muito obrigada.Entendi!!!
Sabrinna
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Qui Abr 04, 2013 15:32
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)