• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Seno Cose e Tangente]Ajuda aí

[Seno Cose e Tangente]Ajuda aí

Mensagempor Giudav » Ter Jun 05, 2012 22:03

Se tg \theta=3 e 0<x<90*,então o valor de cos \theta é:


Minha resolução tg é iqual a sen/cos logo:
\frac{sen}{cos}=\frac{3}{cos}
Obs:elevei tudo ao quadrado
{sen}^{2}.{cos}^{2}={cos}^{2}.9
1=Sen-1.9
Sen-8
Gabarito:\sqrt[]{10}/10
Agradeço desde já
Giudav
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Ter Fev 21, 2012 23:16
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Seno Cose e Tangente]Ajuda aí

Mensagempor MarceloFantini » Qua Jun 06, 2012 02:32

Sua resolução está incorreta, pois seno é uma função limitada nos números reais. Vejamos: temos que \tan \theta = 3 e que 0 \leg \theta < \frac{\pi}{2}. O intervalo de \theta nos assegura que cosseno é positivo. Voltando à definição de tangente, temos

\tan \theta = \frac{\textrm{sen } \theta}{\cos \theta} = 3 \implies \textrm{sen } \theta = 3 \cos \theta.

Vamos agora usar a relação fundamental:

\textrm{sen }^2 \theta + \cos^2 \theta = (3 \cos \theta)^2 + \cos^2 \theta = 9 \cos^2 \theta + \cos^2 \theta = 10 \cos^2 \theta = 1

e finalmente

\cos^2 \theta = \frac{1}{10} \implies \cos \theta = \frac{1}{\sqrt{10}} = \frac{\sqrt{10}}{10}, pois cosseno é positivo.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}