• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação do 2°grau

Equação do 2°grau

Mensagempor karen » Qui Mai 03, 2012 23:35

Resolvendo a equação 3\left(1-cosx \right)={sen}^{2}x,
encontramos para solução:

R: x=k2\pi+\pi, k \in Z

Sei que tem dois modos de fazer e eu não consegui desenvolver totalmente nenhum dos dois.
O primeiro é:

3\left(1-cosx \right)={sen}^{2}x
3\left(1-cosx \right)=1-{cos}^{2}x
3\left(1-cosx \right)-\left(1+cosx \right)\left(1-cosx \right)=0
\left(1-cosx \right)\left(3-1-cosx \right)=0

Essa etapa de colocar em evidência eu não entendi.
Poderia me demonstrar como chegar a esse produto?

O segundo modo é:
3\left(1-cosx \right)={sen}^{2}x
3\left(1-cosx \right)=1-{cos}^{2}x
3-3cosx-1+{cos}^{2}x=0
{cos}^{2}x-3cosx+2=0

Agora não sei continuar....
karen
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 48
Registrado em: Qui Mai 03, 2012 20:49
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Técnico em Eletrônica
Andamento: formado

Re: Equação do 2°grau

Mensagempor MarceloFantini » Sáb Mai 05, 2012 00:22

A etapa de colocar em evidência é exatamente como em ab-ac = 0 \implies a(b-c)=0, porém neste caso temos a = 1 - \cos x, b= 3 e c=1 + \cos x.

Quando um produto de números reais é zero, pelo menos um dos fatores é zero, procure concluir disso.

Para a segunda forma, faça t = \cos x. Então terá \cos^2 x -3 \cos x +2 = (\cos x)^2 -3 (\cos x) +2 = t^2 -3t +2 = 0, que é apenas encontrar as raízes de um polinômio do segundo grau. Tome cuidado: lembre-se que a função cosseno deve estar entre -1 e 1, ou seja, -1 \leq \cos x \leq 1.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Equação do 2°grau

Mensagempor karen » Sáb Mai 05, 2012 15:38

Muito obrigada, entendi direitinho.
karen
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 48
Registrado em: Qui Mai 03, 2012 20:49
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Técnico em Eletrônica
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.