• Anúncio Global
    Respostas
    Exibições
    Última mensagem

(Calculo de trigonometria) Calcule o valor da expressão

(Calculo de trigonometria) Calcule o valor da expressão

Mensagempor andersontricordiano » Seg Dez 05, 2011 21:59

Calcule o valor da expressão y=\frac{2secx+3cotgx}{-tgx+2cossecx} , sendo x um arco do 2º quadrante e cos x=-\frac{1}{4}

Resposta:

\frac{-3-8\sqrt[]{15}}{23}

Agradeço quem resolver!!
andersontricordiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 192
Registrado em: Sex Mar 04, 2011 23:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: (Calculo de trigonometria) Calcule o valor da expressão

Mensagempor nakagumahissao » Seg Abr 30, 2012 00:43

Esta questão não é difícil de ser resolvida, no entanto é deveras, trabalhosa. Ao trabalho então:

y = \frac{2sec(x) + 3 cot (x)}{-tan(x) + 2 csc(x)} \Rightarrow

\Rightarrow y = \frac{2\frac{1}{cos(x)} + 3 \frac{cos(x)}{sin(x)}}{-\frac{sin(x)}{cos(x)}+ 2 \frac{1}{sin(x)}} \Rightarrow

\Rightarrow y = \frac{2\frac{1}{- \frac{1}{4}} + 3 \frac{\frac{-1}{4}}{sin(x)}}{-\frac{sin(x)}{\frac{-1}{4}}+ 2 \frac{1}{sin(x)}} \Rightarrow

\Rightarrow y = \frac{-8 - \frac{3}{4sin(x)}}{4sin(x) + \frac{2}{sin(x)}} = \frac{\frac{-32sin(x) - 3}{4sin(x)}}{\frac{4{sin}^{2}(x) + 2}{sin(x)}} \Rightarrow

\Rightarrow y = \frac{-3 -32sin(x)}{16{sin}^{2}(x) + 8} = \frac{-3 -32\sqrt[2]{1 - {cos}^{2}(x)}}{16(1 - {cos}^{2}(x) + 8} \Rightarrow

\Rightarrow y = \frac{-3 -32\sqrt[2]{1 - \frac{1}{16}}}{16(1 - \frac{1}{16}) + 8} = \frac{-3 -32\sqrt[2]{\frac{15}{16}} }{16(\frac{15}{16}) + 8} \Rightarrow

\Rightarrow y = \frac{-3 - \frac{32}{4}\sqrt[2]{15}}{23} \Rightarrow

Por fim:

\Rightarrow y = \frac{-3 - 8 \sqrt[2]{15}}{23}

Que é a resposta procurada.
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 386
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59