por anamendes » Sáb Abr 28, 2012 13:02
Mostre que:
(cos^4x - sen^4x)/(cos^2x) = 1-tg^2 x
?????????????
-
anamendes
- Usuário Ativo

-
- Mensagens: 17
- Registrado em: Sáb Abr 28, 2012 08:01
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: ciências e tecnologias
- Andamento: cursando
por LuizAquino » Sáb Abr 28, 2012 14:29
anamendes escreveu:Mostre que:
(cos^4x - sen^4x)/(cos^2x) = 1-tg^2 x
?????????????
DicaNote que

.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Trigonometria
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [complexos] demonstrações
por alentejana » Ter Mai 22, 2012 16:22
- 7 Respostas
- 3284 Exibições
- Última mensagem por joaofonseca

Ter Mai 22, 2012 20:25
Números Complexos
-
- Demonstrações Duvidas
por Razoli » Qui Ago 08, 2013 22:35
- 1 Respostas
- 1042 Exibições
- Última mensagem por e8group

Sex Ago 09, 2013 10:23
Álgebra Linear
-
- Demonstrações! Álgebra elementar
por Abelardo » Ter Mar 08, 2011 00:42
- 5 Respostas
- 6704 Exibições
- Última mensagem por Abelardo

Ter Mar 08, 2011 14:35
Álgebra Elementar
-
- [Teoria de Grupos] Demonstrações
por Bruna_Ferreira » Seg Jan 05, 2015 16:18
- 1 Respostas
- 1663 Exibições
- Última mensagem por adauto martins

Sex Jan 09, 2015 16:05
Álgebra Elementar
-
- Demonstrações - composta e trigonom etrica
por mathsoliver » Dom Abr 12, 2015 19:07
- 0 Respostas
- 1045 Exibições
- Última mensagem por mathsoliver

Dom Abr 12, 2015 19:07
Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
cálculo de limites
Autor:
Hansegon - Seg Ago 25, 2008 11:29
Bom dia.
Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado
\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]
Assunto:
cálculo de limites
Autor:
Molina - Seg Ago 25, 2008 13:25
Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.
Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo.
Caso ainda não tenha dado uma

, avisa que eu resolvo.
Bom estudo!
Assunto:
cálculo de limites
Autor:
Guill - Dom Abr 08, 2012 16:03

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.