• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Trignometria] Fórmula Fundamental da Trignometria

[Trignometria] Fórmula Fundamental da Trignometria

Mensagempor rola09 » Dom Mar 18, 2012 15:12

Resolvi este exercício e queria perguntar e partilhar se estou errado em alguma parte das questões.

Considere a seguinte expressão:

B\left(\alpha \right)=-sen\left(5\pi-\alpha \right)+tg\alpha-2cos\left(\frac{5}{2}\pi-\alpha \right)+\frac{cos\left(\frac{5}{2}\pi-\alpha \right)}{sen\left(\frac{3}{2}\pi+\alpha \right)}

1 - Mostre que B\left(\alpha \right)=-3sen\left(\alpha \right).

B\left(\alpha \right)=-sen\left(5\pi-\alpha \right)+tg\left(\alpha \right)-2cos\left(\frac{5}{2}\pi-\alpha \right)+\frac{cos\left(\frac{5}{2}\pi-\alpha \right)}{sen\left(\frac{3}{2}\pi+\alpha \right)}\Leftrightarrow B\left(\alpha \right)=-sen\left(\pi-\alpha \right)+tg\left(\alpha \right)-2cos\left(\frac{\pi}{2}-\alpha \right)+\frac{cos\left(\frac{\pi}{2}-\alpha \right)}{sen\left(\frac{3\pi}{2}+\alpha \right)}\Leftrightarrow B\left(\alpha \right)=-sen\left(\alpha \right)+tg\left(\alpha \right)-2sen\left(\alpha \right)-\frac{sen\alpha}{cos\alpha}\Leftrightarrow B\left(\alpha \right)=-sen\left(\alpha \right)+tg\left(\alpha \right)-2sen\left(\alpha \right)-tg\left(\alpha \right)\Leftrightarrow B\left(\alpha \right)=-3sen\left(\alpha \right)


2 - Sabendo que tg\left(\alpha \right)=-2 e \alpha \in \left]-\frac{\pi}{2};\frac{\pi}{2} \right[ calcule o valor exato da expressão B\left(\alpha \right).

Aplicando a fórmula {tg}^{2}\alpha+1=\frac{1}{{cos}^{2}\alpha}

{\left(-2 \right)}^{2}+1=\frac{1}{{cos}^{2}\alpha}\Leftrightarrow cos\alpha=\pm\frac{\sqrt{5}}{5}. Como \alpha\in\left]-\frac{\pi}{2},\frac{\pi}{2} \right[ sabemos que cos\alpha=\frac{\sqrt{5}}{5}. Então, como tg\alpha=\frac{sen\alpha}{cos\alpha} concluímos que

-2=\frac{sen\alpha}{\frac{\sqrt{5}}{5}}\Leftrightarrow sen\alpha=-\frac{2\sqrt{5}}{5}

Neste caso B\left(\alpha \right)=-3*\left(-\frac{2\sqrt{5}}{5} \right)\Leftrightarrow B\left(\alpha \right)=\frac{6\sqrt{5}}{5}


3 - Resolva em , a condição B\left(\alpha \right)=3cos\left(-\alpha \right).

B\left(\alpha \right)=3cos\left(-\alpha \right)\Leftrightarrow -3sen\alpha=3cos\alpha\Leftrightarrow sen\alpha=-cos\alpha\Leftrightarrow \alpha=

-\frac{\pi}{4}+\kappa\pi\kappa \in Z
rola09
Usuário Ativo
Usuário Ativo
 
Mensagens: 16
Registrado em: Seg Mar 12, 2012 15:56
Formação Escolar: ENSINO MÉDIO
Área/Curso: Cientifico-Natural
Andamento: cursando

Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.