por Anderson Alves » Dom Mar 04, 2012 22:21
Olá Galerinha.
Tenho dúvida nesta questão:
Se a + b = 180º, então a expressão 1 - sen a * sen b vale:
Resp.: Cos² a
Eu responderia 0; pois se a+b é igual a 180º, então a é igual 90º e b é igual a 90º;
90 + 90 = 180; então 1 - sen 90º * sen 90º seria igual a 0;
mas marca como resposta Cos² a.
Ficarei grato pela ajuda que tiver de alguém.
Obrigado pela atenção.
-
Anderson Alves
- Usuário Dedicado

-
- Mensagens: 29
- Registrado em: Sex Fev 24, 2012 22:39
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Curso Técnico em Informática
- Andamento: formado
por TheoFerraz » Dom Mar 04, 2012 23:05
a sua resposta partiu do pressuposto que a e b são iguais... a equação

se resolve para a = 90 e b = 90, sim sim, mas também se resolve pra a = 1 e b = 179 não é? entre varias outras resoluções a e b não precisam ser iguais
se

temos que:

dai,


rapidamente, isso nos leva a ver que:

isso nos mostra que a e b são praticamente o mesmo angulo, o problema é que um deles é do primeiro quadrante e o outro é do segundo! mas o angulo que eles formam com o eixo X é o mesmo! pense no círculo trigonométrico, voce vai perceber...
outro jeito de ver isso é que, se

então

isso é justamente a equaçãozinha que a gente usa pra "transpor" um angulo do primeiro pro segundo quadrante! ficou claro?
caso tenha ficado, pense que, como são o mesmo angulo em quadrantes diferentes (específicamente 1 e 2):

e

dai,

e

-
TheoFerraz
- Colaborador Voluntário

-
- Mensagens: 107
- Registrado em: Qua Abr 13, 2011 19:23
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Bacharelado em Física
- Andamento: cursando
por Anderson Alves » Dom Mar 04, 2012 23:27
Obrigado!!!
-
Anderson Alves
- Usuário Dedicado

-
- Mensagens: 29
- Registrado em: Sex Fev 24, 2012 22:39
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Curso Técnico em Informática
- Andamento: formado
Voltar para Trigonometria
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Expressão Trigonométrica
por Pri Ferreira » Seg Abr 09, 2012 15:44
- 1 Respostas
- 1233 Exibições
- Última mensagem por LuizAquino

Sex Abr 13, 2012 12:56
Trigonometria
-
- Expressão Trigonométrica
por Man Utd » Sáb Jun 15, 2013 20:45
- 0 Respostas
- 777 Exibições
- Última mensagem por Man Utd

Sáb Jun 15, 2013 20:45
Trigonometria
-
- Derivar expressão trigonometrica
por joaofonseca » Qua Nov 30, 2011 22:29
- 1 Respostas
- 1200 Exibições
- Última mensagem por MarceloFantini

Qui Dez 01, 2011 01:45
Trigonometria
-
- [Trigonometria] Expressão trigonométrica
por Kleveland Cristian » Seg Abr 30, 2012 12:48
- 3 Respostas
- 4903 Exibições
- Última mensagem por DanielFerreira

Ter Mai 01, 2012 15:02
Trigonometria
-
- Trigonometria: Cálculo da Expressão Trigonométrica
por leotecco » Qui Mai 21, 2015 19:59
- 0 Respostas
- 1699 Exibições
- Última mensagem por leotecco

Qui Mai 21, 2015 19:59
Trigonometria
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.