• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Trigonometria] Expressão geral

[Trigonometria] Expressão geral

Mensagempor leoslae » Sex Nov 25, 2011 10:49

Um dos vértices, de um decágono regular inscrito em um círculo trigonométrico, coincide com o arco trigonométrico pi/4. Determine uma expressão geral para todos os dez vértices do decágono.


a) 4pi + 5k pi/20 b) 5 pi + 4kpi/20 c) 4 pi + 5 kpi/10 d) 5pi + 4kpi/10


Obs: Preciso dessa questão até as 2 e 40 de hoje. Me ajudem por favor.
leoslae
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sex Nov 25, 2011 10:46
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Curso tecnico em Telecomunicações
Andamento: cursando

Re: [Trigonometria] Expressão geral

Mensagempor TheoFerraz » Sex Nov 25, 2011 13:11

bom... decágono inscrito no circulo trigonométrico, tal que um vertice corresponde a pi/4

seguinte, voce pode determinar uma equação geral, é simples.

Imagine o decágono inscrito no circulo trigonométrico e o angulo focado em \theta =  \frac{ \pi}{4} aonde se situa uma das arestras...

Voce concorda que se eu somar \phi, para algum \phi especifico, eu consigo chegar no proximo vértice?

ou seja, se {\theta}_{0} = \frac{\pi}{4}

entao {\theta}_{1} = {\theta}_{0} + \phi =  \frac{\pi}{4} + \phi

e obviamente {\theta}_{2} = {\theta}_{1} + \phi =  \frac{\pi}{4} + \phi \times 2

em fim... {\theta}_{n} =\frac{\pi}{4} + \phi \times (n)

só nos resta saber quem é \phi

o que sabemos com toda certeza sobre o decágono?

sabemos que {\theta}_{0} = \frac{\pi}{4}

e que {\theta}_{10} = {\theta}_{0} + 2 \pi

pela formula {\theta}_{10} = \frac{\pi}{4} + 10 \times \phi

e ao mesmo tempo, {\theta}_{10} = \frac{\pi}{4} + 2 \pi

entende aonde quero chegar ?

com isso, conseguimos uma formula explícita para qualquer angulo relacionado a qualquer vetice no seu decágono...

\frac{\pi}{4} + 10 \times \phi = \frac{\pi}{4} + 2 \pi

10 \times \phi = 2 \pi

\phi = \frac{\pi}{5}

portanto a formula geral é:

{\theta}_{n} = \frac{\pi}{4} + n \times \frac{\pi}{5}

que vai corresponder a letra b) caso voce queira dizer com:
5pi + 4kpi/20


na verdade

\frac{5 \pi + 4 k \pi}{20}
TheoFerraz
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Qua Abr 13, 2011 19:23
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Física
Andamento: cursando


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: