por Flavia R » Qui Set 22, 2011 19:41
Resolva a equação em R: cos( x - ?/4) - ?2/2 = 0?
S={x ¢ R/ x = pi/2+2kpi ou x = 2kpi, com k¢Z}
cos( x - ?/4) - ?2/2 = 0
cos ( x - ?/4) = ?2/2
quando o cosseno é +?2/2? nos quadrantes 1 e 4, 45º ou ?/4 e 315º ou 7?/4,
mas não apenas na primeira volta, portanto ?/4+ 2k? e 7?/4+ 2k?
( x - ?/4)= ?/4 x= 2?/4 = ?/2+ 2k?
( x - ?/4)= 7?/4 x= 8?/4 = 2? = 0 + 2k?= 2k?
assim está certo? dá pra mim dizer que 2? = 0? e 2? + 2k? = 0+ 2k??
-
Flavia R
- Usuário Ativo

-
- Mensagens: 12
- Registrado em: Qua Ago 24, 2011 17:14
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: curso técnico em agrimensura
- Andamento: formado
por MarceloFantini » Qui Set 22, 2011 23:43
Sua resolução está certa, mas é óbvio

, basta dizer que

, com

, pois eles diferem apenas de um múltiplo inteiro.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Flavia R » Qui Set 22, 2011 23:48
mas pq então a resposta não é 2? +2k??
-
Flavia R
- Usuário Ativo

-
- Mensagens: 12
- Registrado em: Qua Ago 24, 2011 17:14
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: curso técnico em agrimensura
- Andamento: formado
por MarceloFantini » Qui Set 22, 2011 23:51
São respostas equivalentes, se você escrever esta também estará certo.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
Voltar para Trigonometria
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
cálculo de limites
Autor:
Hansegon - Seg Ago 25, 2008 11:29
Bom dia.
Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado
\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]
Assunto:
cálculo de limites
Autor:
Molina - Seg Ago 25, 2008 13:25
Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.
Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo.
Caso ainda não tenha dado uma

, avisa que eu resolvo.
Bom estudo!
Assunto:
cálculo de limites
Autor:
Guill - Dom Abr 08, 2012 16:03

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.