• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Alguém pode me ajudar?

Alguém pode me ajudar?

Mensagempor Andromeda » Seg Set 19, 2011 20:19

FAAP

Resolver a equação tgx - 2senx = 0 para 0\leq x\leq\Pi/2

Eu comecei com:

tgx = 2senx (/senx)

1/cosx = 2

cos x = 1/2

Resposta: V{ Pi/3}

Mas o livro dá como resposta
V{0; Pi/3}

E agora? O que fiz de errado ou não visualizei?
Andromeda
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qua Jul 27, 2011 13:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Biomedicina
Andamento: cursando

Re: Alguém pode me ajudar?

Mensagempor gvm » Seg Set 19, 2011 21:07

Bom, não sei exatamente o que tem de errado na sua resolução. Mas nas equações trigonométricas em geral você tem que tomar muito cuidado quando for dividir, pois seno, cosseno e tangente podem ser iguais a zero aí dá problema no resultado. Deve ter dado algum problema na hora em que você dividiu tudo por sen x ali, é a única explicação que eu posso imaginar.
Eu resolvi da seguinte maneira e cheguei a uma resposta igual à do gabarito.

tg x - 2 . cos x = 0
(sen x / cos x) - 2 . sen x = 0

Colocando sen x em evidência:

sen x [(1/cos x) - 2] = 0

Para o resultado de uma multiplicação ser zero, um dos fatores obrigatoriamente é igual a 0, então:
sen x = 0
x = 0

ou

(1/cos x) - 2 = 0
cos x = (1/2)
x = \Pi/3

S = {0 ; pi/3}
gvm
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Qui Ago 25, 2011 00:02
Formação Escolar: ENSINO MÉDIO
Área/Curso: Vestibulando Engenharia
Andamento: cursando

Re: Alguém pode me ajudar?

Mensagempor Andromeda » Seg Set 19, 2011 21:13

Putz! Tem razão...eu nem tinha me tocado de que senx, cosx e tgx pode dar zero...Acho que por isso estou errando uma 'porrada' de exercícios...Tenso viu?

Brigada, viu?
Andromeda
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qua Jul 27, 2011 13:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Biomedicina
Andamento: cursando


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.