• Anúncio Global
    Respostas
    Exibições
    Última mensagem

TRIGONOMETRIA

TRIGONOMETRIA

Mensagempor Soraya S de Simone » Dom Jun 26, 2011 13:34

Como simplificar a expressão (cotg x - tg x)/(sec x - cossec x) para 0<x<pi/2
Soraya S de Simone
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Dom Jun 26, 2011 13:14
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: TRIGONOMETRIA

Mensagempor Molina » Dom Jun 26, 2011 14:34

Boa tarde.

Experimente transformar cada termo em seno e cosseno e verifoque se vai ser possível cancelar algum termo.
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: TRIGONOMETRIA

Mensagempor Soraya S de Simone » Dom Jun 26, 2011 19:20

Desenvolvi a expressão: ((cos x/sen x) - (sen x/cos x)) / ((1/cos x) - (1/sen x)) = ((cos ao quadrado de x - sen ao quadrado de x) / (sen x X cos x)) / ((sen x - cos x) / (sen x X cos x)) = (cos ao quadrado de x - sen ao quadrado de x) / (sen x - cos x)
A partir daí não consegui simplificar mais.
Soraya S de Simone
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Dom Jun 26, 2011 13:14
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: TRIGONOMETRIA

Mensagempor FilipeCaceres » Dom Jun 26, 2011 19:57

Você encontrou
\frac{cos^2x - sen^2x}{sen x - cos x}

Então faça o seguinte,
\frac{cos^2x - sen^2x}{sen x - cos x}=\frac{(sen x - cos x)(sen x +cos x)}{sen x - cos x}=senx +cosx

Utilize o latex para postar suas dúvidas leia viewtopic.php?f=9&t=74
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59