• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Logaritmos sistemas e equações

Logaritmos sistemas e equações

Mensagempor Allanx » Sáb Set 24, 2011 15:30

Olá pessoal estava estudando log e me deparei com exercícios onde fiquei completamente perdido, não vou negar, são muitos. Porém, postarei apenas os primeiros de cada sequência, se não for o bastante para resolver os outros eu volto a postar( o correto seria criar um novo tópico, certo?)

1) Simplificar a^\frac{\log(\log a)}{\log a}
Essa eu não tive e idéia nem por onde começar, pensei em tentar mudar de base, mas não deu certo... praticamente não saí do zero. Log dentro de log é uma coisa muito estranha para mim, existe alguma regra prática para esse tipo de situação?
Resposta: \log a
Consegui resolver a primeira, era bobeira, elevei 10 a log a ( já que estava dividindo)a^{\log_a \log a} podendo assim simplificar para \log a

2) Se x=10^\frac{1}{1-\log z} e y=10^\frac{1}{1-\log x} prove que: z=10^\frac{1}{1-\log y}
Como cada uma das definições depende da outra eu fiquei perdido ao tentar unificá-las, sem sucesso também. Como faço para isolar uma incógnita em uma situação dessas?

3) Resolver a equação x^2+x.\log5 -\log2 = 0
Utilizando as propriedades e transformando tudo em log ficou assim:
\log\frac{10^x^2.5^x}{2} = \log 1 \Rightarrow 10^x^2.5^x = 2
Resposta: -1 e log 2

Por enquanto são só essas, tentando refazer meus passos acabei conseguindo algumas que não havia conseguido antes.
Obrigado pela atenção
Allanx
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sex Mar 25, 2011 23:46
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Logaritmos sistemas e equações

Mensagempor LuizAquino » Sáb Set 24, 2011 17:07

Allanx escreveu:o correto seria criar um novo tópico, certo?

Sim, por questão de organização. Inclusive, o ideal é que em cada tópico haja apenas um exercício.

Allanx escreveu:1) Simplificar a^\frac{\log(\log a)}{\log a}

Note que aplicando mudança de base, podemos dizer que:

\log_a (\log a) = \frac{\log(\log a)}{\log a}

Lembrando-se da propriedade b^{\log_b x} = x , temos que:

a^\frac{\log(\log a)}{\log a} = a^{\log_a (\log a)} = \log a

Allanx escreveu:2) Se x=10^\frac{1}{1-\log z} e y=10^\frac{1}{1-\log x} prove que: z=10^\frac{1}{1-\log y}


Aplicando a definição de logaritmo, podemos escrever que:

x=10^\frac{1}{1-\log z} \Rightarrow \log x = \frac{1}{1 - \log z} \Rightarrow  \log z = 1 - \frac{1}{\log x} \Rightarrow z = 10^{1 - \frac{1}{\log x}}

y=10^\frac{1}{1-\log x} \Rightarrow \log y = \frac{1}{1 - \log x} \Rightarrow  \log x = 1 - \frac{1}{\log y} \Rightarrow x = 10^{1 - \frac{1}{\log y}}

Agora basta substituir x na expressão para z.

Allanx escreveu:3) Resolver a equação x^2+x\log5 -\log2 = 0


Isso é simplesmente uma equação polinomial do 2° grau. Resolva normalmente calculando o discriminante.

\Delta = (\log 5)^2 - 4\cdot 1 \cdot (-\log 2) = (\log 5)^2 + 4\log 2

Lembrando-se que \log 5 =\log \frac{10}{2} = 1 - \log 2, temos que:

\Delta = (1 + \log 2)^2

Agora basta você calcular as duas soluções usando x = \frac{-\log 5 \pm \sqrt{(1 + \log 2)^2}}{2\cdot 1} .
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D