• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Logaritmo

Logaritmo

Mensagempor umaiafilho » Sáb Mai 21, 2011 19:18

Usando a definição de logaritimo para recair numa equação exponencial:
a) {log}_{  \frac{1}{125}  {}^{25}}
resolução
{log}_{  \frac{1}{125}  {}^{25}} = y >> 25=( \frac{1}{125}){}^{y} >> {5}^{2} = ( {5}^{-3}){}^{Y}>>{5}^{2} ={5}^{-3y} >> 2 = -3y >> y = - \frac{2}{3} >>>
{log}_{ \frac{1}{125}}{}^{25}=\frac{-2}{3}


problema 1
{log}_{\sqrt[]{2}}{}^{0,125}

problema 2
{log}_{\sqrt[]{27}}{}^{\sqrt[3]{9}}

agradeço quem puder me ajudar!
umaiafilho
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Qui Mai 12, 2011 20:47
Formação Escolar: GRADUAÇÃO
Área/Curso: CONTABEIS
Andamento: cursando

Re: Logaritmo

Mensagempor DanielFerreira » Dom Mar 04, 2012 10:50

umaiafilho escreveu:Usando a definição de logaritimo para recair numa equação exponencial:
problema 1
{log}_{\sqrt[]{2}}{}^{0,125}

agradeço quem puder me ajudar!

log_\sqrt{2}^{0,125} = \alpha

(\sqrt{2})^\alpha = \frac{125}{1000}

(2^\frac{1}{2})^\alpha = \frac{5^3}{2^3.5^3}

(2)^\frac{\alpha}{2} = \frac{1}{2^3}

2^\frac{\alpha}{2} = 2^{- 3}

\alpha = - 6
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Logaritmo

Mensagempor DanielFerreira » Dom Mar 04, 2012 11:00

umaiafilho escreveu:Usando a definição de logaritimo para recair numa equação exponencial:
problema 2
{log}_{\sqrt[]{27}}{}^{\sqrt[3]{9}}

agradeço quem puder me ajudar!

log_\sqrt{27}^{\sqrt[3]{9}} = \beta

(\sqrt{27})^\beta = \sqrt[3]{9}

(3^\frac{3}{2})^\beta = (3^\frac{2}{3})

(3)^\frac{3\beta}{2} = (3)^\frac{2}{3}

9\beta = 4

\beta = \frac{4}{9}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}