por my2009 » Sex Jan 28, 2011 21:37
O número real a é o menor dentre os valores de x que satisfazem a equação
![2{log}_{2} ( 1+\sqrt[]{2}x)-{log}_{2}(\sqrt[]{2x} )= 3 2{log}_{2} ( 1+\sqrt[]{2}x)-{log}_{2}(\sqrt[]{2x} )= 3](/latexrender/pictures/f8c450cae86ab19dac6b6041cd166294.png)
Então,

é igual a :
Resp 1/2
-
my2009
- Colaborador Voluntário

-
- Mensagens: 104
- Registrado em: Seg Mai 24, 2010 13:57
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por 0 kelvin » Sáb Jan 29, 2011 18:54
Começa utilizando a propriedade do log de potência. 2 log a = log

Depois como tem subtração de log de base 2, reescreve como quociente.
-
0 kelvin
- Usuário Parceiro

-
- Mensagens: 78
- Registrado em: Dom Out 31, 2010 16:53
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Ciencias atmosfericas
- Andamento: cursando
por my2009 » Seg Jan 31, 2011 20:24
Olá Kelvin... tentei fazer mas não deu certo mesmo
eu parei aqui :
![\frac{{log}_{2}(1 + \sqrt[]{2x})^2}{{log}_{2}(\sqrt[]{2x}) = 3} \frac{{log}_{2}(1 + \sqrt[]{2x})^2}{{log}_{2}(\sqrt[]{2x}) = 3}](/latexrender/pictures/9fa2ba1fea7902aa7cd1e9e024da4149.png)
rsrsrs vc pode terminaar

???
-
my2009
- Colaborador Voluntário

-
- Mensagens: 104
- Registrado em: Seg Mai 24, 2010 13:57
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por my2009 » Qua Fev 09, 2011 10:24
alguem pode me ajudar ?
-
my2009
- Colaborador Voluntário

-
- Mensagens: 104
- Registrado em: Seg Mai 24, 2010 13:57
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por 0 kelvin » Qua Fev 09, 2011 11:39
!

Eu devia ter dito propriedade do log quociente no lugar de "reescreve como quociente"


É raiz de 2 ou raiz de 2x em cima? Desenvolvendo a expressão esta parecendo que tem uma equação quadrática.
Definição do log:

-
0 kelvin
- Usuário Parceiro

-
- Mensagens: 78
- Registrado em: Dom Out 31, 2010 16:53
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Ciencias atmosfericas
- Andamento: cursando
por my2009 » Qua Fev 09, 2011 12:14
Alguem , por favor pode responder essa questão ??? Desde o dia 28 DE JANEIRO estou esperando... e até então... não consegui resolver. 0 Kelvin agradeço sua ajuda.. mas estou ficando mais confusa hehehe desculpe
-
my2009
- Colaborador Voluntário

-
- Mensagens: 104
- Registrado em: Seg Mai 24, 2010 13:57
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por DanielFerreira » Qua Fev 09, 2011 12:53
my2009,
confirma por favor

ou

"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por my2009 » Qua Fev 09, 2011 13:01
Olá danjr5 é
![\sqrt[]{2} x \sqrt[]{2} x](/latexrender/pictures/6b2a0e264c2ba5308579a7798e89a972.png)
-
my2009
- Colaborador Voluntário

-
- Mensagens: 104
- Registrado em: Seg Mai 24, 2010 13:57
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por DanielFerreira » Qua Fev 09, 2011 13:16
Consegui.
vou postar.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por DanielFerreira » Qua Fev 09, 2011 13:36
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por my2009 » Qua Fev 09, 2011 15:45
Com certeza ,me ajudou e muito !!!! Consegui entender... seria muito mais fácil se todas pessoas resolvessem dessa forma. Obrigada !
-
my2009
- Colaborador Voluntário

-
- Mensagens: 104
- Registrado em: Seg Mai 24, 2010 13:57
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por DanielFerreira » Qui Fev 10, 2011 09:29
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por Alisson Cabrini » Qui Ago 03, 2017 01:05
''
-
Alisson Cabrini
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Qui Ago 03, 2017 00:53
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
Voltar para Logaritmos
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Derivada de Logaritmo Natural] Exercício de logaritmo
por Ronaldobb » Dom Out 28, 2012 17:40
- 1 Respostas
- 2358 Exibições
- Última mensagem por MarceloFantini

Dom Out 28, 2012 18:16
Cálculo: Limites, Derivadas e Integrais
-
- Olha eu de novo...
por Fiel8 » Qua Jul 01, 2009 17:41
- 1 Respostas
- 3838 Exibições
- Última mensagem por Molina

Qua Jul 01, 2009 20:42
Funções
-
- MATRIZES DE NOVO
por GABRIELA » Ter Set 01, 2009 15:38
- 2 Respostas
- 4385 Exibições
- Última mensagem por profmatematica

Sáb Ago 28, 2010 05:34
Matrizes e Determinantes
-
- Geometria de Novo
por Ansso » Qui Out 21, 2010 22:31
- 11 Respostas
- 10256 Exibições
- Última mensagem por Ansso

Ter Out 26, 2010 20:43
Geometria Analítica
-
- ajuda eu de novo!!!!!
por zig » Sáb Fev 19, 2011 16:03
- 3 Respostas
- 4501 Exibições
- Última mensagem por LuizAquino

Sáb Fev 19, 2011 19:52
Sistemas de Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.