• Anúncio Global
    Respostas
    Exibições
    Última mensagem

(ESPCEX) Equação logaritmica

(ESPCEX) Equação logaritmica

Mensagempor natanskt » Seg Out 11, 2010 16:53

considerando log_m{10}=1,4e log_m{50}=2,4,pode-se afirmar que,com base nesses dados,que o valor do logaritmo decimal de 5 é:
a-)3/7
b-)1/2
c-)5/7
d-)7/3
e-)7/5
natanskt
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 176
Registrado em: Qua Out 06, 2010 14:56
Formação Escolar: ENSINO MÉDIO
Área/Curso: nenhum
Andamento: cursando

Re: (ESPCEX) Equação logaritmica

Mensagempor MarceloFantini » Seg Out 11, 2010 17:40

Veja que \log_m 50  \log_m (10 \cdot 5) = \log_m 10 + \log_m 5 = 2,4 \rightarrow 1 + \log_m 5 = 2,4 \rightarrow \log_m 5 = 1,4 = \frac{14}{10} = \frac{7}{5}

Alternativa E.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: (ESPCEX) Equação logaritmica

Mensagempor natanskt » Qui Out 14, 2010 10:48

olá fantini
o gabarito aqui esta falando que é a alternativa C
já encontrei erros no gabarito,mais pode ver certinho se vc não esqueceu de nada:?

ABRAÇOS AMIGO
natanskt
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 176
Registrado em: Qua Out 06, 2010 14:56
Formação Escolar: ENSINO MÉDIO
Área/Curso: nenhum
Andamento: cursando

Re: (ESPCEX) Equação logaritmica

Mensagempor MarceloFantini » Qui Out 14, 2010 16:38

Aparentemente a minha resolução ficou incompleta (e errada, errei uma conta, que consertarei agora):

\log_m 50 = \log_m (5 . 10) = \log_m 5 + \log_m 10 = \log_m 5 + 1,4 = 2,4 \rightarrow \log_m 5 = 1

Assim, m^1 = 5 \rightarrow m = 5

O que nós QUEREMOS: o logaritmo decimal de 5, que eu vou chamar de x (\log_{10} 5 = x) .

O que nós TEMOS: \log_5 10 = 1,4 .

Da segunda afirmação:

5^{1,4} = 10

Tomando o logaritmo decimal dos dois lados:

\log_{10} 5^{1,4} = \log_{10} 10 \rightarrow 1,4 . \log_{10} 5 = 1 \rightarrow \log_{10} 5 = \frac{1}{1,4} = \frac{10}{14} = \frac{5}{7}

Agora está certo.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59