• Anúncio Global
    Respostas
    Exibições
    Última mensagem

(AFA) Equação logaritmica

(AFA) Equação logaritmica

Mensagempor natanskt » Sáb Out 09, 2010 15:00

29-)(AFA) sendo log_3{(\sqrt{7}}-2)}=k o valor de log_3{(\sqrt{7}}+2)}=k é:
a-)1-k
b-)1+k
c-)2-k
d-)2+k
natanskt
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 176
Registrado em: Qua Out 06, 2010 14:56
Formação Escolar: ENSINO MÉDIO
Área/Curso: nenhum
Andamento: cursando

Re: (AFA) Equação logaritmica

Mensagempor Douglasm » Sáb Out 09, 2010 17:29

Primeiramente, há um erro no enunciado: Queremos o valor de \log_3 (\sqrt{7} + 2), que não é igual a k. Chamarei esse valor de x. Assim temos:

\log_3 (\sqrt{7} - 2) = k

\log_3 (\sqrt{7} + 2) = x

Multiplicando um pelo outro temos:

\log_3 (7 - 4) = k + x \;\therefore

1 - k = x

Ficamos com a letra a.
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}