• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação exponencial

Equação exponencial

Mensagempor Moreno1986 » Sex Ago 06, 2010 14:48

Dados os valores!

log2=0,30103
log3=0,47712
log5=0,69

0,97^x . 500 = 100
0,97^x = 0,2
x . log(97/100) = log(2/10)
x . (log97 - log100) = Log2 - (log2 + Log5)
x . (log97 - 2) = log2 - (log2 + log5)

Só consigo obter log 2 e 5 pra substituir depois, como trabalharei com o logaritmo 97 pra obter logaritmo 3?
Moreno1986
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Ter Abr 13, 2010 01:20
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: técnico em mecânica
Andamento: formado

Re: Equação exponencial

Mensagempor Moreno1986 » Ter Ago 10, 2010 18:02

Para que 500 gramas de uma substância radioativa se desintegre a uma taxa de 3% ao ano, se reduzindo a 100gramas, serão necessários:

a)50,9 anos
b)54,2 anos
c)53,6 anos
d)43,6 anos
e)56,6 anos

Dados:

log2=0,30103
log3=0,47712
log5=0,69

Eu havia montado assim:
500 . 0,97^x = 100

Mas gostaria de saber se existe algum jeito de eu montar a equação em função dos 3% do enunciado pra poder usar as aproximações dadas.
Moreno1986
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Ter Abr 13, 2010 01:20
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: técnico em mecânica
Andamento: formado


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.