• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Domínio máximo da funçao logarítmica

Domínio máximo da funçao logarítmica

Mensagempor wolney » Dom Mar 27, 2016 14:08

[Domínio máximo da funçao logarítmica]

O exercício está em inglês mas traduzindo literalmente é o seguinte : a funçao f(x) =log base 2 (log base 3(log base 2(log base 3(log x base 2)))) tem o intervalo x> ? como seu domínio máximo em números reais . Eu sei que x> o e que quando y=0 , x=1 mas eu nao consigo entender o que seria esse domínio máximo nem esse intervalo, nem como prosseguir ou começar a resolver essa questão. PS: quando eu digo log base , sem numero entre log e base significa q está sem numero msm como se multiplicasse pelo parenteses.
wolney
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Dom Mar 27, 2016 13:59
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Domínio máximo da funçao logarítmica

Mensagempor 0 kelvin » Seg Mar 28, 2016 22:42

Eu acho que a tradução não é "domínio máximo" porque eu nunca vi esse termo antes. Uma função logarítmica, qualquer que seja a base, tem um domínio onde vc sabe que não existe número que elevado a outro dê zero. Existe o limite da função quando x tende a zero e quando x tende a infinito. Logaritmo, por definição, não tem valores negativos.
0 kelvin
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 75
Registrado em: Dom Out 31, 2010 16:53
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciencias atmosfericas
Andamento: cursando

Re: Domínio máximo da funçao logarítmica

Mensagempor wolney » Ter Mar 29, 2016 09:15

0 kelvin escreveu:Eu acho que a tradução não é "domínio máximo" porque eu nunca vi esse termo antes. Uma função logarítmica, qualquer que seja a base, tem um domínio onde vc sabe que não existe número que elevado a outro dê zero. Existe o limite da função quando x tende a zero e quando x tende a infinito. Logaritmo, por definição, não tem valores negativos.


Obg,então é possivel nesse caso calcular esse limite? Se sim como seria?
wolney
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Dom Mar 27, 2016 13:59
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Domínio máximo da funçao logarítmica

Mensagempor 0 kelvin » Qua Mar 30, 2016 21:51

Limite de função é cálculo. Num livro de cálculo tem a prova do limite de log(x).

Domínio máximo soa como intervalo, o intervalo de valores para os quais o log(x) esta definido. No caso do log(x), a função aceita valores próximos de zero mas não iguais a zero (é aberto nesse ponto), até infinito (infinito não é um número, é aberto o intervalo para os valores positivos).

Intervalo de função é exatamente isso, um valor máximo e um mínimo para os quais a função tem algum valor real. Então, por exemplo, f(x) = x^2 o x pode assumir qualquer valor que a função sempre terá um valor real, o intervalo é aberto do menos infinito até o mais infinito.
0 kelvin
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 75
Registrado em: Dom Out 31, 2010 16:53
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciencias atmosfericas
Andamento: cursando


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59