• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[mackenzie-sp] logaritmo com intervalo

[mackenzie-sp] logaritmo com intervalo

Mensagempor JKS » Dom Mar 17, 2013 13:24

Gostaria de ajuda, desde já agradeço. Estou achando x= 2 ..a resposta é [4,5[ não entendi onde surgiu o 5

(mackenzie) se log{x}_{2} (x na base 2)= 2 + colog {2}_{x} (2 na base x), então {x}^{x}pertence ao intervalo:
JKS
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Qua Ago 01, 2012 13:13
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [mackenzie-sp] logaritmo com intervalo

Mensagempor e8group » Dom Mar 17, 2013 14:56

log_2 (x)  = 2 + co \ log_2 (x)

Por definição co \ log_b (a) =  - log_b (a) então co \ log_2 (x) =  - log_2(x) .

Sendo assim ,

log_2 (x)  = 2 + co \ log_2 (x)  \iff   log_2 (x)  =  2  - log_2 (x)  \iff  2 log_2 (x) = 2 \iff log_2(x) = 1 \iff  x = 2 .

Sua solução estar correta até a etapa acima ,sua dificuldade está relacionada a interpretação do texto .

Veja " ... então x^x pertence ao intervalo ? " .

Ora , se x = 2 então x^x =  2^2 = 4 . logo qualquer intervalo contido em [4, +\infty) tais que o elemento 4 pertence a um destes estes intervalos satisfaz o enunciado . Como por exemplo [4,9)  , [4,7] , e assim por diante ;portanto cabe analisar cada alternativa se é que têm .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}