• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Inequação Logarítmica

Inequação Logarítmica

Mensagempor crsjcarlos » Qui Dez 06, 2012 10:42

Para que valores de x, x \in [0 , 2\pi] verifica-se a desigualdade:

log_{cosx}^{(1 + 2cosx)} + log_{cosx}^{(1 + cosx)} > 1

Resposta: \frac{\pi }{3} < x < \frac{\pi }{2} ou \frac{3\pi }{2} < x < \frac{5\pi }{3}
crsjcarlos
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Qua Dez 05, 2012 17:32
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Inequação Logarítmica

Mensagempor e8group » Qui Dez 06, 2012 17:58

Pela condição de existência cos(x)> 0  \ \text{e} \ cos(x)  \neq 1 .Uma vez que cos(x) > 0   ,   cos(x) + 1 \  \text{e} \ 1 + 2cos(x) > 0 .Assim obtemos o seguinte intervalo ,

cos(x) \in (0,1) \implies  x \in (0,\pi/2) \cup (3\pi/2,2\pi) . Desenvolvendo a inequação ,

log_{cos(x)}(cos(x)+1) + log_{cos(x)}(2 cos(x)+1)> 1  \\ \implies     log_{cos(x)}[(cos(x)+1)(2 cos(x)+1)] > 1 = log_{cos(x)}(cos(x)) .

Assim ,


(cos(x)+1)(2 cos(x)+1) > cos(x)  \implies 2cos^2(x) + 2cos(x) + 1 > 0  \implies 2 cos(x)[cos(x)+1]> -1 .


Conclusão :

Como , 1 > Im(cos(x)) > 0 vamos ter Im(cos(x) +1) \in (1,2) .Logo ,

2 cos(x)[cos(x)+1] >  0  , \forall x  \in (0,\pi/2) \cup (3\pi/2,2\pi) e portanto 2 cos(x)[cos(x)+1] > - 1 .

Não sei como chegar no gabarito .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}