• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Logaritmo]-PAES UNIMONTES

[Logaritmo]-PAES UNIMONTES

Mensagempor thamysoares » Sex Nov 16, 2012 10:01

A partir de um certo ano, a população de uma cidade passou a crescer de acordo com a função P=50000.{(1,02)}^{n} em que n representa os anos e P, o número de habitantes. Sabendo-se que log1,02=0,009, depois de quantos anos aproximadamente essa cidade atingirá 500000 habitantes?
Me expliquem como se resolve questões desse tipo, por favor. Obg.
thamysoares
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Qua Nov 14, 2012 19:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Logaritmo]-PAES UNIMONTES

Mensagempor e8group » Sex Nov 16, 2012 11:48

Bom dia , thamysoares . Esta função p denota o números de habitantes em função do tempo n , a medida que o tempo n vai aumentando ,o número de habitantes cresce estritamente . Neste caso particular , o exercício que vc calcule o tempo n que satisfaz o número de habitantes . p =  500000 .

Basta resolver , 500.000  =   50.000  \cdot (1,02)^n .Consegue terminar ?
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Logaritmo]-PAES UNIMONTES

Mensagempor thamysoares » Sex Nov 16, 2012 15:44

santhiago escreveu:Bom dia , thamysoares . Esta função p denota o números de habitantes em função do tempo n , a medida que o tempo n vai aumentando ,o número de habitantes cresce estritamente . Neste caso particular , o exercício que vc calcule o tempo n que satisfaz o número de habitantes . p =  500000 .

Basta resolver , 500.000  =   50.000  \cdot (1,02)^n .Consegue terminar ?


Deu aproximadamente 111 anos. Está correto?
thamysoares
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Qua Nov 14, 2012 19:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Logaritmo]-PAES UNIMONTES

Mensagempor e8group » Sex Nov 16, 2012 16:12

Isso mesmo , estar correto


500.000 = 50.000(1,02)^n  = 5\cdot 10^4 (1,02)^n =  5\cdot 10^{5}


Multiplicando ambos lados por 1/( 5 \cdot 10^4 ) vem que ,


5\cdot 10^4 (1,02)^n =  5\cdot 10^{5} =     (5\cdot 10^4 (1,02)^n ) \cdot \frac{1}{5\cdot 10^4}=  (5\cdot 10^{5}) \cdot \frac{1}{5\cdot 10^4}   = 10 =(1,02)^n .

Aplicando logaritmo ,

log(10) =   log(1,02)^n  =  n \cdot log(1,02) = 1


Pelo enunciado , log(1,02)  \approx 0,009 =   0,009 \cdot 1000 /1000 = 9/1000 = 9 \cdot 10^{-3}

Daí , n = \frac{1}{9 \cdot 10^{-3} }  =  \frac{10^3}{9}  = \frac{999}{9} + \frac{1}{9}  = 111 + 0,\bar{1}  \approx 111 \text{anos}
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Logaritmo]-PAES UNIMONTES

Mensagempor thamysoares » Sex Nov 16, 2012 16:34

santhiago escreveu:Isso mesmo , estar correto


500.000 = 50.000(1,02)^n  = 5\cdot 10^4 (1,02)^n =  5\cdot 10^{5}


Multiplicando ambos lados por 1/( 5 \cdot 10^4 ) vem que ,


5\cdot 10^4 (1,02)^n =  5\cdot 10^{5} =     (5\cdot 10^4 (1,02)^n ) \cdot \frac{1}{5\cdot 10^4}=  (5\cdot 10^{5}) \cdot \frac{1}{5\cdot 10^4}   = 10 =(1,02)^n .

Aplicando logaritmo ,

log(10) =   log(1,02)^n  =  n \cdot log(1,02) = 1


Pelo enunciado , log(1,02)  \approx 0,009 =   0,009 \cdot 1000 /1000 = 9/1000 = 9 \cdot 10^{-3}

Daí , n = \frac{1}{9 \cdot 10^{-3} }  =  \frac{10^3}{9}  = \frac{999}{9} + \frac{1}{9}  = 111 + 0,\bar{1}  \approx 111 \text{anos}


Obrigada Santhiago!! =)
thamysoares
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Qua Nov 14, 2012 19:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: