• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Logaritmo]-UFLA-MG

[Logaritmo]-UFLA-MG

Mensagempor SCHOOLGIRL+T » Qui Nov 15, 2012 17:44

Em uma substância radioativa, o número N de átomos de um isótopo de um certo elemento é reduzido à metade após um período de 5000 anos. Ou seja, se t representa o tempo medido em unidades de 5000 anos, e No corresponde ao número de átomos desse isótopo no instante t=0, então N={N}_{0}.{2}^{-1}. Se a substância apresenta 100.000 átomos desse isótopo no instante t=o, então o número de anos necessários para que o número desses átomos seja igual a 100, admitindo {log}_{10}2 = 0,3, é?
SCHOOLGIRL+T
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 60
Registrado em: Qua Nov 07, 2012 08:59
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Logaritmo]-UFLA-MG

Mensagempor e8group » Sex Nov 23, 2012 09:34

N descresce ao passar do tempo , no instante t = 0 teremos .

Após t unidades de tempo , temos que N = 100 . Qual valor que t deve assumir para termos N = 100 , sabendo que ?

Basta resolver ,


100 = 10^5 \cdot 2^{-t} . Aplicando logaritmo nos dois lados , vem que log(100) = log(10^2) =  2 log(10) =  2  =  log(10^5 \cdot 2^{-t} ) =   log(10^5) + log(2^{-t} ) =   5 log(10) -t\cdot log(2)  =  5  - 0,3 t =  2 .


Somando - 5 dos dois lados e após isto mutiplicando ambos lados por- 1/0,3 , segue que t = \frac{3}{0,3}  =   10 .

Como t é medido em unidades 5000 anos , concluímos que t = 10 \cdot 5000 \text{anos} = 50.000 \text{anos} .

Comente qualquer dúvida .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Logaritmo]-UFLA-MG

Mensagempor SCHOOLGIRL+T » Sex Nov 23, 2012 18:51

santhiago escreveu:N descresce ao passar do tempo , no instante t = 0 teremos .

Após t unidades de tempo , temos que N = 100 . Qual valor que t deve assumir para termos N = 100 , sabendo que ?

Basta resolver ,


100 = 10^5 \cdot 2^{-t} . Aplicando logaritmo nos dois lados , vem que log(100) = log(10^2) =  2 log(10) =  2  =  log(10^5 \cdot 2^{-t} ) =   log(10^5) + log(2^{-t} ) =   5 log(10) -t\cdot log(2)  =  5  - 0,3 t =  2 .


Somando - 5 dos dois lados e após isto mutiplicando ambos lados por- 1/0,3 , segue que t = \frac{3}{0,3}  =   10 .

Como t é medido em unidades 5000 anos , concluímos que t = 10 \cdot 5000 \text{anos} = 50.000 \text{anos} .

Comente qualquer dúvida .

Entendi direitinho. Obrigada.
SCHOOLGIRL+T
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 60
Registrado em: Qua Nov 07, 2012 08:59
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Logaritmos

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59