por adauto martins » Qui Nov 06, 2014 20:38
meu caro lucas,
se vc nao estudar as propriedades de logaritmo vc nao ira entender nada...qquer site de matematica tem as propriedades...
eu perco mais tempo escrevendo no latex do q. resolvendo exercicios,mas vamos la...
![\log_{}^{\sqrt[]{x-1}}=\log_{}^{({x-1})^{1/2}}=(1/2).\log_{}^{x-1}...aqui usei a propriedade \log_{}^{{x}^{k}}=k.\log_{}^{x} \log_{}^{\sqrt[]{x-1}}=\log_{}^{({x-1})^{1/2}}=(1/2).\log_{}^{x-1}...aqui usei a propriedade \log_{}^{{x}^{k}}=k.\log_{}^{x}](/latexrender/pictures/e1e7df6232c0ff008bb5bf9e72852cec.png)
...como a equaçao eh:
![\log_{}^{\sqrt[]{x-1}}+\log_{}^{5}=\log_{}^{({2x-5})\Rightarrow (1/2)\log_{}^{x-1}+\log_{}^{5}=\log_{}^{2x-5} \log_{}^{\sqrt[]{x-1}}+\log_{}^{5}=\log_{}^{({2x-5})\Rightarrow (1/2)\log_{}^{x-1}+\log_{}^{5}=\log_{}^{2x-5}](/latexrender/pictures/2577c1568d29d308f4a718d6ab9380c6.png)
...reescrevendo ficara:

=

,agora vou usar a propriedade:

...

...desenvolvendo

-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
por jefferson0209 » Ter Set 22, 2015 18:36
alguem me ajuda?
1)sendo log2=u e log3=v,determine:
a)log12
b)log15
2)calcula:
log 81+ log625-log100
.. 3 . . 5
-
jefferson0209
- Usuário Dedicado

-
- Mensagens: 29
- Registrado em: Ter Set 22, 2015 15:13
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: matematica
- Andamento: cursando
por lucassouza » Ter Set 22, 2015 19:49
1)sendo log2=u e log3=v,determine:
a)log12
b)log15
a letra b) se resolve da mesma maneira.
Na segunda basicamente vc tem que fazer simplificações usando propriedades de logaritmos, o log de 81 na base 3 vai ficar igual a 4,log625 na base 5 fica igual a 4 e log100 igual a 2 ai vc efetua a operação.
aguarde uma outra pessoa responder pq não sei se está certo!
- Anexos
-

- possível resolução da primeira
- primeira.gif (2.4 KiB) Exibido 3535 vezes
-
lucassouza
- Usuário Dedicado

-
- Mensagens: 29
- Registrado em: Seg Set 15, 2014 15:03
- Formação Escolar: SUPLETIVO
- Andamento: cursando
Voltar para Logaritmos
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Equações] Me ajudem nessas equações do meu trabalho!
por henriquea92 » Sáb Jun 01, 2013 15:53
- 0 Respostas
- 3153 Exibições
- Última mensagem por henriquea92

Sáb Jun 01, 2013 15:53
Equações
-
- [Equações] Determinar Frações de equações
por fenixxx » Ter Fev 28, 2012 21:28
- 2 Respostas
- 4147 Exibições
- Última mensagem por fenixxx

Qua Fev 29, 2012 17:08
Funções
-
- Equações cartesianas e equações paramétricas
por Victor Mello » Sáb Ago 23, 2014 16:24
- 1 Respostas
- 3426 Exibições
- Última mensagem por Russman

Sáb Ago 23, 2014 18:29
Funções
-
- Equações
por Neperiano » Qua Fev 11, 2009 12:33
- 6 Respostas
- 6485 Exibições
- Última mensagem por marcio silva

Sex Mar 20, 2009 20:15
Sistemas de Equações
-
- Equações
por Luna » Qui Set 10, 2009 19:30
- 2 Respostas
- 2266 Exibições
- Última mensagem por Luna

Sex Set 11, 2009 19:54
Sistemas de Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.