por pereirajoaojr » Dom Nov 02, 2014 17:25
Reduza a expressão dada em um único logaritmo:
log9 x + log3 6 - 3log9 z
Me ajudem por favor
-
pereirajoaojr
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Dom Nov 02, 2014 17:17
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia da Computação
- Andamento: cursando
por adauto martins » Seg Nov 03, 2014 17:43

=

=
![(\log_{3}^{x}/3)-3\log_{3}^{z}+\log_{3}^{2}-5=\log_{3}^{2(\sqrt[3]{x})/(({z}^{3})(\sqrt[5]{3}))} (\log_{3}^{x}/3)-3\log_{3}^{z}+\log_{3}^{2}-5=\log_{3}^{2(\sqrt[3]{x})/(({z}^{3})(\sqrt[5]{3}))}](/latexrender/pictures/322c56424442435d43bc951946b3289a.png)
...costumo errar em contas,mas o racionio e esse...confere ai
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
por pereirajoaojr » Ter Nov 04, 2014 01:32
No gabarito marca que a resposta é log9 (36x/z³), mas não consigo chegar nesse resultado.
-
pereirajoaojr
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Dom Nov 02, 2014 17:17
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia da Computação
- Andamento: cursando
por Russman » Ter Nov 04, 2014 13:49
Primeiro reduza todos os logaritmos a mesma base. Lembre-se que

de modo que, segundo a identidade

temos

.
Ainda,

. Portanto,

. Assim, sua expressão fica

que é, segundo as propriedades de soma e diferença de logaritmos,

"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
Voltar para Logaritmos
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- para cada vetor V o simétrico -V é único
por dkiwilson » Sáb Set 23, 2017 19:16
- 0 Respostas
- 2475 Exibições
- Última mensagem por dkiwilson

Sáb Set 23, 2017 19:16
Álgebra Linear
-
- Prove que cada inteiro "a" tem um unico oposto
por zero » Dom Mar 08, 2009 20:43
- 2 Respostas
- 2145 Exibições
- Última mensagem por zero

Qua Mar 11, 2009 22:02
Álgebra Elementar
-
- DADA A FUNÇÃO
por SILMARAKNETSCH » Sex Nov 09, 2012 15:29
- 5 Respostas
- 2648 Exibições
- Última mensagem por SILMARAKNETSCH

Sex Nov 09, 2012 16:50
Funções
-
- Dada a matriz seu determinante é:
por oescolhido » Qua Fev 20, 2013 18:40
- 1 Respostas
- 2932 Exibições
- Última mensagem por young_jedi

Qua Fev 20, 2013 21:08
Matrizes e Determinantes
-
- Problema com Derivada dada Implicitamente
por Loretto » Qui Jul 29, 2010 17:15
- 2 Respostas
- 5057 Exibições
- Última mensagem por Loretto

Sex Jul 30, 2010 15:00
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.