• Anúncio Global
    Respostas
    Exibições
    Última mensagem

gênios me ajudem aqui ficarei agradecida pelo resto da vida

gênios me ajudem aqui ficarei agradecida pelo resto da vida

Mensagempor Larissabueno » Sáb Ago 02, 2014 20:10

gente quem souber me ajuda pfvr,
a)log3²=x ....
b)log1/9 1/3=x
c)log25³?5 =x
d)log1/9 1/3=x
e)log 0,01 100=x
f)log3³?81=x
g)log5 1/125=x
h)log2?1/512=x
j)log3 (3?9)=x
k)log7 (5?7)10/343=x
i)logx 16 =-1
m)logx ?2 = 1/2
n)logx 0,01=0,1
o)log5 x=5
p)log?5 x=2/3
q)log ?3 2x-4
Larissabueno
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Sáb Ago 02, 2014 19:01
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: gênios me ajudem aqui ficarei agradecida pelo resto da v

Mensagempor Pessoa Estranha » Dom Ago 03, 2014 00:59

Olá!

Olha, são muitos itens e você precisa tentar fazer. É sempre bom treinar...

Vou fazer alguns para que possa entender o conceito e, assim, continuar.

b) Parece que é "log de 1/3 na base 1/9". Segue: "1/9 elevado à 1/2 resulta em 1/3", uma vez que "1/9 elevado à 1/2 é o mesmo que raiz (quadrada) de 1/9" e cujo resultado é 1/3, já que "1/3.1/3 é 1/9"".

e) Parece que é "log de 100 na base 0,01". Na mesma ideia, temos: "1/100 elevado à (-1) resulta em 100". Note que 0,01 = 1/100. Daí, x = -1.

o) Parece que é "log de x na base 5 resulta em 5". Analogamente, vem que "5 elevado à 5 é x" e, portanto, x = 5.5.5.5.5 = 25.25.5 = 3125.

Vale lembrar que:

CONDIÇÕES DE EXISTÊNCIA DO LOGARITMO: base positiva e diferente de 1; o logaritmando é positivo (isto é, se queremos calcular log de x na base y, vem que x é o logaritmando).

Entendeu?
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?