• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Inequação Logarítmica

Inequação Logarítmica

Mensagempor crsjcarlos » Qui Dez 06, 2012 10:42

Para que valores de x, x \in [0 , 2\pi] verifica-se a desigualdade:

log_{cosx}^{(1 + 2cosx)} + log_{cosx}^{(1 + cosx)} > 1

Resposta: \frac{\pi }{3} < x < \frac{\pi }{2} ou \frac{3\pi }{2} < x < \frac{5\pi }{3}
crsjcarlos
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Qua Dez 05, 2012 17:32
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Inequação Logarítmica

Mensagempor e8group » Qui Dez 06, 2012 17:58

Pela condição de existência cos(x)> 0  \ \text{e} \ cos(x)  \neq 1 .Uma vez que cos(x) > 0   ,   cos(x) + 1 \  \text{e} \ 1 + 2cos(x) > 0 .Assim obtemos o seguinte intervalo ,

cos(x) \in (0,1) \implies  x \in (0,\pi/2) \cup (3\pi/2,2\pi) . Desenvolvendo a inequação ,

log_{cos(x)}(cos(x)+1) + log_{cos(x)}(2 cos(x)+1)> 1  \\ \implies     log_{cos(x)}[(cos(x)+1)(2 cos(x)+1)] > 1 = log_{cos(x)}(cos(x)) .

Assim ,


(cos(x)+1)(2 cos(x)+1) > cos(x)  \implies 2cos^2(x) + 2cos(x) + 1 > 0  \implies 2 cos(x)[cos(x)+1]> -1 .


Conclusão :

Como , 1 > Im(cos(x)) > 0 vamos ter Im(cos(x) +1) \in (1,2) .Logo ,

2 cos(x)[cos(x)+1] >  0  , \forall x  \in (0,\pi/2) \cup (3\pi/2,2\pi) e portanto 2 cos(x)[cos(x)+1] > - 1 .

Não sei como chegar no gabarito .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: