por crsjcarlos » Qui Dez 06, 2012 10:42
Para que valores de x, x

[0 , 2

] verifica-se a desigualdade:

+

> 1
Resposta:

< x <

ou

< x <

-
crsjcarlos
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Qua Dez 05, 2012 17:32
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por e8group » Qui Dez 06, 2012 17:58
Pela condição de existência

.Uma vez que

.Assim obtemos o seguinte intervalo ,

. Desenvolvendo a inequação ,
![log_{cos(x)}(cos(x)+1) + log_{cos(x)}(2 cos(x)+1)> 1 \\ \implies log_{cos(x)}[(cos(x)+1)(2 cos(x)+1)] > 1 = log_{cos(x)}(cos(x)) log_{cos(x)}(cos(x)+1) + log_{cos(x)}(2 cos(x)+1)> 1 \\ \implies log_{cos(x)}[(cos(x)+1)(2 cos(x)+1)] > 1 = log_{cos(x)}(cos(x))](/latexrender/pictures/7c54790752a18582a827a04a389ac69f.png)
.
Assim ,
![(cos(x)+1)(2 cos(x)+1) > cos(x) \implies 2cos^2(x) + 2cos(x) + 1 > 0 \implies 2 cos(x)[cos(x)+1]> -1 (cos(x)+1)(2 cos(x)+1) > cos(x) \implies 2cos^2(x) + 2cos(x) + 1 > 0 \implies 2 cos(x)[cos(x)+1]> -1](/latexrender/pictures/a8863ee6fa5619d8b1d904ad96cd4941.png)
.
Conclusão :
Como ,

vamos ter

.Logo ,
![2 cos(x)[cos(x)+1] > 0 , \forall x \in (0,\pi/2) \cup (3\pi/2,2\pi) 2 cos(x)[cos(x)+1] > 0 , \forall x \in (0,\pi/2) \cup (3\pi/2,2\pi)](/latexrender/pictures/f20cf26f82cb7738d73fcc01bca3b382.png)
e portanto
![2 cos(x)[cos(x)+1] > - 1 2 cos(x)[cos(x)+1] > - 1](/latexrender/pictures/7845dad4060eaed44ede2cd71a21c089.png)
.
Não sei como chegar no gabarito .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Logaritmos
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- inequação Logarítmica 2°EM
por Beik » Sex Out 22, 2010 13:28
- 3 Respostas
- 2362 Exibições
- Última mensagem por DanielRJ

Sex Out 22, 2010 15:56
Logaritmos
-
- (AFA) inequação logaritmica
por natanskt » Sex Out 29, 2010 10:49
- 2 Respostas
- 3200 Exibições
- Última mensagem por MarceloFantini

Qui Nov 04, 2010 10:33
Logaritmos
-
- (AFA) inequação logaritmica
por natanskt » Sex Out 29, 2010 10:54
- 2 Respostas
- 2035 Exibições
- Última mensagem por Pedro123

Seg Nov 01, 2010 20:59
Logaritmos
-
- Inequação Logarítmica
por Rafael16 » Sex Ago 10, 2012 11:36
- 1 Respostas
- 1570 Exibições
- Última mensagem por e8group

Sex Ago 10, 2012 12:22
Logaritmos
-
- [Inequação Logaritmica]
por Gustavo Gomes » Sex Fev 07, 2014 22:28
- 1 Respostas
- 1558 Exibições
- Última mensagem por e8group

Sáb Fev 08, 2014 09:58
Inequações
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
dúvida em uma questão em regra de 3!
Autor:
leandro moraes - Qui Jul 01, 2010 12:41
pessoal eu achei como resultado 180 toneladas,entretanto sei que a questão está erra pela lógica e a resposta correta segundo o gabarito é 1.800 toneladas.
me explique onde eu estou pecando na questão. resolva explicando.
78 – ( CEFET – 1993 ) Os desabamentos, em sua maioria, são causados por grande acúmulo de lixo nas encostas dos morros. Se 10 pessoas retiram 135 toneladas de lixo em 9 dias, quantas toneladas serão retiradas por 40 pessoas em 30 dias ?
Assunto:
dúvida em uma questão em regra de 3!
Autor:
Douglasm - Qui Jul 01, 2010 13:16
Observe o raciocínio:
10 pessoas - 9 dias - 135 toneladas
1 pessoa - 9 dias - 13,5 toneladas
1 pessoa - 1 dia - 1,5 toneladas
40 pessoas - 1 dia - 60 toneladas
40 pessoas - 30 dias - 1800 toneladas
Assunto:
dúvida em uma questão em regra de 3!
Autor:
leandro moraes - Qui Jul 01, 2010 13:18
pessoal já achei a resposta. o meu erro foi bobo rsrsrrs errei em uma continha de multiplicação, é mole rsrsrsr mas felizmente consegui.
Assunto:
dúvida em uma questão em regra de 3!
Autor:
leandro moraes - Qui Jul 01, 2010 13:21
leandro moraes escreveu:pessoal já achei a resposta. o meu erro foi bobo rsrsrrs errei em uma continha de multiplicação, é mole rsrsrsr mas felizmente consegui.
valeu meu camarada.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.