• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Exponencial/Logarítmos] exercício ITA

[Exponencial/Logarítmos] exercício ITA

Mensagempor fabiomarine » Ter Ago 28, 2012 16:27

Boa tarde. Sou novo no fórum. Não estou conseguindo achar o caminho para o exercício abaixo.
Obrigado

A soma de todos os valores de x que satisfazem à equação abaixo:

9^{x-1/2}- 4/3^{1-x}=-1

a) 0 b) 1 c) 2 d) 3 e) 4
fabiomarine
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Ter Ago 28, 2012 16:00
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: [Exponencial/Logarítmos] exercício ITA

Mensagempor e8group » Ter Ago 28, 2012 18:08

Boa tarde ,sua equação seria esta 9^{\frac{x-1}{2}} -\left( \frac{4}{3}\right )^{1-x} = -1 ??
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Exponencial/Logarítmos] exercício ITA

Mensagempor fabiomarine » Ter Ago 28, 2012 23:54

...
Editado pela última vez por fabiomarine em Qua Ago 29, 2012 00:22, em um total de 1 vez.
fabiomarine
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Ter Ago 28, 2012 16:00
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: [Exponencial/Logarítmos] exercício ITA

Mensagempor fabiomarine » Qua Ago 29, 2012 00:17

santhiago escreveu:Boa tarde ,sua equação seria esta 9^{\frac{x-1}{2}} -\left( \frac{4}{3}\right )^{1-x} = -1 ??


Não Santhiago. A grafia é aquela mesma.

Anexei uma foto da página.
Anexos
IMG00039-20120828-2234.jpg
IMG00039-20120828-2234.jpg (6.36 KiB) Exibido 3577 vezes
fabiomarine
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Ter Ago 28, 2012 16:00
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: [Exponencial/Logarítmos] exercício ITA

Mensagempor e8group » Qua Ago 29, 2012 00:18

Boa noite . Sendo assim ,note que :


9^{x - 1/2}  - \frac{4}{3^{1-x}} = - 1


\frac{9^x}{3} - 4 \frac{3^x}{3} = -1



(3^x)^2 - 4(3^x) + 3 = 0


3^x = \frac{4 \pm \sqrt{16 - 12} } {2}  = \frac{4 \pm 2 }{2}

\implies  3^x = \begin{cases} 3 \\ 1  \end{cases}  \implies x = \begin{cases} 1 \\ 0  \end{cases} .



Logo a soma dos possíveis valores p/ x será 0+1 = 1.
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Exponencial/Logarítmos] exercício ITA

Mensagempor fabiomarine » Qua Ago 29, 2012 13:23

santhiago escreveu:Boa noite . Sendo assim ,note que :

9^{x - 1/2}  - \frac{4}{3^{1-x}} = - 1

\frac{9^x}{3} - 4 \frac{3^x}{3} = -1

(3^x)^2 - 4(3^x) + 3 = 0

3^x = \frac{4 \pm \sqrt{16 - 12} } {2}  = \frac{4 \pm 2 }{2}

\implies  3^x = \begin{cases} 3 \\ 1  \end{cases}  \implies x = \begin{cases} 1 \\ 0  \end{cases} .

Logo a soma dos possíveis valores p/ x será 0+1 = 1.


Não tinha pensado em enxergar a expressão como uma equação do 2º grau. Muito obrigado!
fabiomarine
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Ter Ago 28, 2012 16:00
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}