• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Exercício de logaritmo

Exercício de logaritmo

Mensagempor Aliocha Karamazov » Sáb Abr 09, 2011 01:24

E aí, galera. Não consigo avançar nesse exercício:

Se \log_{10}{2}=m e \log_{10}{3}=n, podemos afirmar que \log_{5}{6} é:

Eu comecei a fazer da seguinte maneira:

\log_{5}{6}=\frac{\log_{10}{6}}{\log_{10}{5}}=\frac{\log_{10}{(2.3)}}{\log_{10}{5}}}=\frac{\log_{10}{2}+\log_{10}{3}}{\log_{10}{5}}=\frac{m+n}{\log_{10}{5}}

O problema é que eu não consigo escrever {\log_{10}{5}} em função de m e n.

Se alguém puder, ficaria grato!
Aliocha Karamazov
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 90
Registrado em: Qua Mar 16, 2011 17:26
Formação Escolar: GRADUAÇÃO
Área/Curso: Física
Andamento: cursando

Re: Exercício de logaritmo

Mensagempor FilipeCaceres » Sáb Abr 09, 2011 01:45

Olá Aliocha Karamazov,

Vou lhe dar uma dica,
log_{10}5=log_{10}(\frac{20}{4}) , agora temos multiplos de 2, com isso vc já consegue terminar.

Se não conseguir poste novamente.

Abraço.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado

Re: Exercício de logaritmo

Mensagempor Aliocha Karamazov » Sáb Abr 09, 2011 01:54

filipecaceres, muito obrigado! Consegui terminar.

Abraço.
Aliocha Karamazov
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 90
Registrado em: Qua Mar 16, 2011 17:26
Formação Escolar: GRADUAÇÃO
Área/Curso: Física
Andamento: cursando


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}