• Anúncio Global
    Respostas
    Exibições
    Última mensagem

FUNÇÃO DA ÁREA

FUNÇÃO DA ÁREA

Mensagempor GabyRitter » Sáb Jun 20, 2009 21:14

:oops:
Olá...

Tenho algumas dúvidas nesta questão e admito que em grande parte seja pela má interpretação.

Excercicio: Considere um retângulo com as seguintes medidas:
Altura: 8cm
Base: 20cm
Retiramos x unidades da base e acrescentamos x unidades na altura. Para quais valores de x a área do novo retângulo é inferior ao dobro desse valor x?

O que sei: ao retiramos x unidades da base e adicionarmos x unidades na altura teremos um novo retângulo com valor de área menor.
GabyRitter
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Dom Mai 17, 2009 19:15
Formação Escolar: GRADUAÇÃO
Área/Curso: Química
Andamento: cursando

Re: FUNÇÃO DA ÁREA

Mensagempor Cleyson007 » Ter Jun 23, 2009 09:52

Bom dia GabyRitter!

Segue resolução:

\frac{(20-x)(8+x)}{2<2x}

Espero ter ajudado :-O

Um abraço.

Até mais.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.