• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Função modular] Dúvida com relação a raízes

[Função modular] Dúvida com relação a raízes

Mensagempor exburro » Sáb Mar 31, 2012 01:23

Olá, eu era bem idiota no colegial e entrei na engenharia, tenho umas dúvidas bem retardadas e aqui vai uma.
Estou tentando resolver esta função
f(x)=x²-|3x+4|

O que eu fiz até agora foi:
1. p/ (3x+4)>=0 x>=-4/3
x²-3x+4=0

2. p/ (3x+4)<0 x<-4/3
x²+3x-4


Agora eu deveria fazer o gráfico das duas mas tenho a seguinte dúvida... Como vou calcular as raízes se a função 1. terá um delta negativo?


Obrigado pessoal, estou me empenhando e descobrindo a cada dia o quão bom é estudar. Até mais.
exburro
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sáb Mar 31, 2012 01:14
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Automação
Andamento: cursando

Re: [Função modular] Dúvida com relação a raízes

Mensagempor LuizAquino » Sex Abr 06, 2012 12:40

exburro escreveu:Estou tentando resolver esta função
f(x)=x²-|3x+4|


Não faz sentido dizer que você está "tentando resolver esta função".

O que você poderia dizer é que está tentando esboçar o gráfico da função.

exburro escreveu:1. p/ (3x+4)>=0 x>=-4/3
x²-3x+4=0


Errado. Para x >= -4/3 temos que |3x + 4| = 3x + 4. Sendo assim, temos que:
x² - |3x + 4| = x² - (3x + 4) = x² - 3x - 4.

Em resumo: para x >= -4/3 a expressão para a função é x² - 3x - 4.

exburro escreveu:2. p/ (3x+4)<0 x<-4/3
x²+3x-4


Errado. Para x < -4/3 temos que |3x + 4| = -(3x + 4). Sendo assim, temos que:
x² - |3x + 4| = x² - [-(3x + 4)] = x² + 3x + 4.

Em resumo: para x < -4/3 a expressão para a função é x² + 3x + 4.

Juntando o que foi dito nas partes 1. e 2., temos que a função pode ser reescrita como:

f(x) = \begin{cases}x^2 - 3x - 4, \textrm{ se } x \geq -\frac{4}{3} \\ x^2 + 3x + 4, \textrm{ se } x < -\frac{4}{3} \end{cases}

exburro escreveu:Agora eu deveria fazer o gráfico das duas mas tenho a seguinte dúvida... Como vou calcular as raízes se a função 1. terá um delta negativo?


Quando uma função polinomial do segundo grau tem discriminante (delta) negativo, ela não tem raízes reais e portanto o seu gráfico não toca o eixo x. O seu gráfico ficará totalmente acima ou totalmente abaixo do eixo x, sendo que ele apenas tocará no eixo y.

Para revisar como construir o gráfico de uma função polinomial do segundo grau, eu recomendo que você assista a videoaula "Matemática - Aula 5 - Função do Segundo Grau". Ela está disponível no canal do Nerckie:

http://www.youtube.com/nerckie

Além disso, vale lembar que a função do exercício é dividida em duas partes. Para cada parte teremos um "pedaço" de parábola. Ou seja, cada parte será um "pedaço" do gráfico de uma função polinomial do segundo grau.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.