• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função Composta

Função Composta

Mensagempor lihsecundo » Sex Ago 05, 2011 23:58

Considere as funções reais f e g definidas por f(x) = x + 2 e g(x) = x², para todo x real.
Nessas condições, assinale o que for correto.
01) As funções f e g são sobrejetoras.
02) Os domínios de (f . g)(x) e f(x)/g(x) diferem por um único número real.
04) f²(x) = (f o f)(x) = x² + 4x + 4.
08) Os gráficos de f e de g se interceptam no ponto P(2,4).
16) As funções f e g são injetoras no intervalo [0,?).
32) O único valor de x para o qual a função F(x) = (g o f)(x) se anula é zero.
64) (f o g)(x) = x² + 2 e (g o f)(x) = x² + 4x + 4.

Itens corretos: 02, 08, 16 e 64
Não entendi porque o item 02 está correto.
04) f²(x) > (x+2).(x+2) = x²+2x+2x+4 .. não estaria correta? o que eu fiz de errado?
Não entendi porque o item 16 está correto também.

Obrigada!
lihsecundo
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Qua Ago 03, 2011 17:44
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Função Composta

Mensagempor LuizAquino » Sáb Ago 06, 2011 00:59

Considere as funções reais f e g definidas por f(x) = x + 2 e g(x) = x², para todo x real.
Nessas condições, assinale o que for correto.


Primeiro, o exercício está considerando que f e g são funções de \mathbb{R} em \mathbb{R} . Vejamos os quesitos.

01) As funções f e g são sobrejetoras.

Falso, pois g não é sobrejetora. A imagem de g é [0,\,+\infty) e seu contradomínio é \mathbb{R} . Desse modo, \textrm{Im}(g) \neq \textrm{CD}(g) .

02) Os domínios de (f . g)(x) e f(x)/g(x) diferem por um único número real.

Verdadeiro, pois em (f\circ g)(x) o valor de x pode ser qualquer número real, enquanto que em \frac{f(x)}{g(x)} o valor de x pode ser qualquer número real exceto o zero (já que g(0) = 0 e não pode haver zero no denominador).

04) f²(x) = (f o f)(x) = x² + 4x + 4.

Falso, pois:
(i) (f\circ f)(x) = f(f(x)) = f(x) + 2 = (x+2)+2 = x+4 ;

(ii) f^2 (x) = [f(x)]^2 = (x + 2)^2 = x^2 + 4x + 4 .

Disso temos que f^2(x) \neq (f\circ f)(x) .

08) Os gráficos de f e de g se interceptam no ponto P(2,4).

Verdadeiro, pois f(2)=4 e g(2)=4.

16) As funções f e g são injetoras no intervalo [0,?).

Verdadeiro, pois se x_1 e x_2 pertencem ao intervalo dado e x_1\neq x_2, temos que f(x_1)\neq f(x_2) e g(x_1)\neq g(x_2) .

32) O único valor de x para o qual a função F(x) = (g o f)(x) se anula é zero.

Falso, pois:
(g \circ f)(x) = g(f(x)) = [f(x)]^2 = (x+2)^2, sendo que o único valor de x que anula essa função é -2.

64) (f o g)(x) = x² + 2 e (g o f)(x) = x² + 4x + 4.

Verdadeiro, pois:
(i) (f \circ g)(x) = f(g(x)) = g(x) + 2 = x^2 + 2 ;

(ii) (g \circ f)(x) = g(f(x)) = [f(x)]^2 = x^2 + 4x + 4 .
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.