• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Como resolvo essa função? ALGUÉM SABE?

Como resolvo essa função? ALGUÉM SABE?

Mensagempor Kelvin Brayan » Qua Mai 25, 2011 13:12

Se f(x)= {a}^{x}, pode-se afirmar que \frac{f(x+1)- f(x-1)}{f(2)-1} é igual a

A) f(x-1)

B) f(x)

C) f(x+1)

D)\frac{2f(1)}{f(2)-1}

E) \frac{f(2)}{f(2)-1}

AJUDA, POR FAVOR!
Kelvin Brayan
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 111
Registrado em: Dom Fev 20, 2011 16:50
Localização: Varginha - MG
Formação Escolar: ENSINO MÉDIO
Área/Curso: Inglês
Andamento: cursando

Re: Como resolvo essa função? ALGUÉM SABE?

Mensagempor Kelvin Brayan » Qui Mai 26, 2011 01:14

???
Kelvin Brayan
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 111
Registrado em: Dom Fev 20, 2011 16:50
Localização: Varginha - MG
Formação Escolar: ENSINO MÉDIO
Área/Curso: Inglês
Andamento: cursando

Re: Como resolvo essa função? ALGUÉM SABE?

Mensagempor FilipeCaceres » Qui Mai 26, 2011 01:45

Temos,
f(x)= {a}^{x}

Logo,
\frac{f(x+1)- f(x-1)}{f(2)-1}=\frac{a^{x+1}-a^{x-1}}{a^2-1}=\frac{\frac{a^{x+1}}{1}-\frac{a^x}{a}}{a^2-1}=\frac{a^{x+2}-a^x}{a.(a^2-1)}=\frac{a^x.\cancel{(a^2-1)}}{a.\cancel{(a^2-1)}} , para a \neq \pm 1

Assim temos,
\frac{f(x+1)- f(x-1)}{f(2)-1}=\frac{a^x}{a}=a^{x-1} ,para a \neq 0

Portanto,
\frac{f(x+1)- f(x-1)}{f(2)-1}=f(x-1)

Abraço.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado

Re: Como resolvo essa função? ALGUÉM SABE?

Mensagempor Kelvin Brayan » Qui Mai 26, 2011 10:58

Opaaaa valeu!
Kelvin Brayan
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 111
Registrado em: Dom Fev 20, 2011 16:50
Localização: Varginha - MG
Formação Escolar: ENSINO MÉDIO
Área/Curso: Inglês
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.