• Anúncio Global
    Respostas
    Exibições
    Última mensagem

CALCULO DE FUNÇÕES

CALCULO DE FUNÇÕES

Mensagempor andersontricordiano » Sex Mai 13, 2011 17:43

O intervalo dos valores reais de m para que a equação (m+1)x²-2mx+(m-1)=0 tenha uma rais positiva e outra negativa é:

detalhe a resposta é ]-1,1[
andersontricordiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 192
Registrado em: Sex Mar 04, 2011 23:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: CALCULO DE FUNÇÕES

Mensagempor DanielRJ » Sex Mai 13, 2011 19:59

andersontricordiano escreveu:O intervalo dos valores reais de m para que a equação (m+1)x²-2mx+(m-1)=0 tenha uma rais positiva e outra negativa é:

detalhe a resposta é ]-1,1[


Aplique baskara:

4m^2-4.(m+1).(m-1)
4m^2-4(m^2-1)
4m^2-4m^2+4
4

Achando as raizes:

m'=\frac{-(-2m)+\sqrt{4}}{2.(m+1)}>0

m'=\frac{2m+2}{2m+2}>0

m'=2m+2>0

m'>-1

agora só aplicar m<0 que vai ser:

m"<1
Avatar do usuário
DanielRJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Sex Ago 20, 2010 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}