• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Explicação de função com radicais

Explicação de função com radicais

Mensagempor brumadense » Sex Mar 19, 2010 03:16

Olá colegas

Gostaria de uma explicação de como essa função foi resolvida. Estou sentindo dificuldade em resolver funções quando aparecem com radicais. Alguém poderia me explicar como resolver quando aparece radicais, como no caso abaixo? Desde já agradeço.

Seja a função f: [0,\infty)\rightarrowR dado por f\left(x \right)=\frac{{x}^{2}- x + 1}{x + 1}. Calcule:

f \left(\sqrt[2]{2}-1 \right)=\frac{{\left(\sqrt[2]{2}-1 \right)}^{2}-\left(\sqrt[2]{2}-1 \right)+1}{\sqrt[2]{2}-1+1}=\frac{2-2\sqrt[2]{2}+1-\sqrt[2]{2}+1+1}{\sqrt[2]{2}}=\frac{5-3\sqrt[2]{2}}{\sqrt[2]{2}}=\frac{5\sqrt[2]{2}-3\sqrt[2]{2}.\sqrt[2]{2}}{\sqrt[2]{2}.\sqrt[2]{2}}=\frac{5\sqrt[2]{2}-6}{2}
brumadense
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sex Jan 15, 2010 00:06
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Explicação de função com radicais

Mensagempor Molina » Sex Mar 19, 2010 09:17

brumadense escreveu:Olá colegas

Gostaria de uma explicação de como essa função foi resolvida. Estou sentindo dificuldade em resolver funções quando aparecem com radicais. Alguém poderia me explicar como resolver quando aparece radicais, como no caso abaixo? Desde já agradeço.

Seja a função f: [0,\infty)\rightarrowR dado por f\left(x \right)=\frac{{x}^{2}- x + 1}{x + 1}. Calcule:

f \left(\sqrt[2]{2}-1 \right)=\frac{{\left(\sqrt[2]{2}-1 \right)}^{2}-\left(\sqrt[2]{2}-1 \right)+1}{\sqrt[2]{2}-1+1}=\frac{2-2\sqrt[2]{2}+1-\sqrt[2]{2}+1+1}{\sqrt[2]{2}}=\frac{5-3\sqrt[2]{2}}{\sqrt[2]{2}}=\frac{5\sqrt[2]{2}-3\sqrt[2]{2}.\sqrt[2]{2}}{\sqrt[2]{2}.\sqrt[2]{2}}=\frac{5\sqrt[2]{2}-6}{2}

Bom dia.

Dada esta função f \left(x \right)=\frac{{x}^{2}- x + 1}{x + 1} queremos encontrar f \left(\sqrt[2]{2}-1 \right), ou seja, vamos substituir todos os x da equação por \sqrt[2]{2}-1. E foi isso que foi feito.

Os procedimentos seguintes foi só algebrismo. Elevar ao quadrado, somar, subtrair, etc. Porém, o denominador da fração (parte de baixo) ficou com raiz. Quando isso acontece temos que racionalizar esta fração, ou seja, eliminar essa raiz de baixo. Para fazer isso o truque é sempre o mesmo: multiplicar pela própria raiz. Só que temos que multiplicar em cima e embaixo. E foi isso que foi feito, multiplicando por \sqrt{2}.

Qualquer dúvida, avise! :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}