• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite de funções

Limite de funções

Mensagempor jeremiashenrique » Sex Abr 17, 2015 16:07

Pessoal, já tentei e tentei, bati cabeça de todas as maneiras, vi vídeo aulas e nada de conseguir responder. Me ajudem!
A questão está em anexo. E se possivel com explicação, pois tenho que entender a questão, alguém me dê uma luz.
Anexos
desafio.jpg
Questão de limite de funções
jeremiashenrique
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sex Abr 17, 2015 15:55
Formação Escolar: GRADUAÇÃO
Área/Curso: administração de empresas
Andamento: cursando

Re: Limite de funções

Mensagempor DanielFerreira » Sex Abr 17, 2015 20:32

Olá Jeremias, boa noite!

A questão indaga se existe o limite de f quando x tende a 1; ora, substitua o um no limite. Tendo obtido \frac{3}{0}, estamos diante de uma impossibilidade...

Então, o que devemos fazer? verificar se os limites laterais são iguais, se sim, a resposta é o valor encontrado; se não, o limite não existe!

Parte I:

\\ \lim_{x \to 1^+} \frac{x^2 + x + 1}{x^2 - 1} = \\\\\\ \lim_{x \to 1^+} \frac{x^2 + x + 1}{(x + 1)(x - 1)} = \\\\\\ \lim_{x \to 1^+} \frac{1}{x - 1} \cdot \frac{x^2 + x + 1}{x + 1} = \\\\\\ + \infty \cdot \frac{3}{2} = \\\\ \boxed{+ \infty}

Sugiro que faça a parte II, isto é, encontre o valor de \lim_{x \to 1^-} \frac{x^2 + x + 1}{x^2 - 1}... E, tente concluir o exercício.

Até breve!!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.