• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Determinar os numeros criticos

Determinar os numeros criticos

Mensagempor Vencill » Qua Dez 03, 2014 17:42

Olá Boa tarde!

Estou com dúvidas no seguinte exercício:

Determinar os números críticos da seguinte função f(x) = 3{t}^{4}+{4t}^{3}+{6t}^{2}+4

Agradeço pela ajuda é que estou aprendendo agora números críticos e estou com dúvidas.
Vencill
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Qui Nov 13, 2014 16:54
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Determinar os numeros criticos

Mensagempor Cleyson007 » Qua Dez 03, 2014 18:12

Olá, boa tarde!

Basta derivar a função f(x) e igualar a zero.

f' (t) = 12t³ + 12t² +12t

Coloca o 12t em evidência e iguala a zero.

Qualquer dúvida estou em disposição.

Abraço
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Determinar os numeros criticos

Mensagempor Vencill » Qua Dez 03, 2014 23:10

colocando o 12t em evidencia o resultado seria: 3+4+1=0?

Esta correto?
Vencill
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Qui Nov 13, 2014 16:54
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Determinar os numeros criticos

Mensagempor Cleyson007 » Qui Dez 04, 2014 08:21

Olá, bom dia!

Não..

Colocando o 12t em evidência, temos:

12t(t² + t + 1)

Logo, 12t = 0 --> t = 0

Ou t² + t + 1 = 0 (Essa equação do segundo não possui raízes reais). Lembra que o(s) número(s) crítico(s) deve(m) pertencer ao domínio da f(x)?

Pois é, o domínio da nossa f(x) é o conjunto dos números reais. Logo, somente 0 é número crítico.

Abraço
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}