• Anúncio Global
    Respostas
    Exibições
    Última mensagem

eita funçao lasqueira

eita funçao lasqueira

Mensagempor giboia90 » Qua Nov 28, 2012 22:10

tem uma funçao que os pontos são (10,f(10))

{y}^{3} + y = x

gostaria de saber os metodos algébricos de como chega a y = 2 ?
giboia90
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 32
Registrado em: Dom Dez 04, 2011 01:06
Formação Escolar: GRADUAÇÃO
Área/Curso: engeharia civil
Andamento: cursando

Re: eita funçao lasqueira

Mensagempor young_jedi » Qui Nov 29, 2012 12:17

y^3+y=x

y^3+y=10

y^3+y-10=0

y^3-8+y-2=0

y^3-2^3+y-2=0

(y-2)(y^2+2y+4)+y-2=0

(y-2)(y^2+2y+4+1)=0

(y-2)(y^2+2y+5)=0

portanto y=2 é uma solução
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: eita funçao lasqueira

Mensagempor giboia90 » Qui Nov 29, 2012 15:24

como vc conseguiu esse +1 do penultimo passo
giboia90
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 32
Registrado em: Dom Dez 04, 2011 01:06
Formação Escolar: GRADUAÇÃO
Área/Curso: engeharia civil
Andamento: cursando

Re: eita funçao lasqueira

Mensagempor young_jedi » Qui Nov 29, 2012 16:13

coloquei o (y-2) em evidencia

(y-2)(y^2+2y+4)+(y-2)=(y-2)(y^2+2y+4+1)
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}